Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Glob Ecol Biogeogr ; 31(7): 1399-1421, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35915625

ABSTRACT

Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.

2.
Nat Ecol Evol ; 5(9): 1301-1308, 2021 09.
Article in English | MEDLINE | ID: mdl-34226700

ABSTRACT

Marine protected areas (MPAs) play a leading role in conserving and restoring marine environments. MPAs can benefit both marine populations within their boundaries and external populations owing to a net export of organisms (spillover). However, little is known about variation in performance within MPAs. For example, edge effects may degrade populations within MPAs close to their boundaries. Here we synthesize empirical estimates of 72 taxa of fish and invertebrates to explore spatial patterns across the borders of 27 no-take MPAs. We show that there is a prominent and consistent edge effect that extends approximately 1 km within the MPA, in which population sizes on the border are 60% smaller than those in the core area. Our analysis of cross-boundary population trends suggests that, globally, the smallest 64% of no-take MPAs (those of less than 10 km2 in area) may hold only about half (45-56%) of the population size that is implied by their area. MPAs with buffer zones did not display edge effects, suggesting that extending no-take areas beyond the target habitats and managing fishing activities around MPA borders are critical for boosting MPA performance.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Invertebrates , Population Density
3.
Ecol Evol ; 7(19): 7838-7847, 2017 10.
Article in English | MEDLINE | ID: mdl-29043038

ABSTRACT

A major focus of invasion biology is understanding the traits associated with introduction success. Most studies assess these traits in the invaded region, while only few compare nonindigenous species to the pool of potential invaders in their native region. We focused on the niche breadth hypothesis, commonly evoked but seldom tested, which states that generalist species are more likely to become introduced as they are capable of thriving under a wide set of conditions. Based on the massive introduction of tropical species into the Mediterranean via the Suez Canal (Lessepsian migration), we defined ascidians in the Red Sea as the pool of potential invaders. We constructed unique settlement plates, each representing six different niches, to assess ascidian niche breadth, and deployed them in similar habitats in the native and invaded regions. For each species found on plates, we evaluated its abundance, relative abundance across successional stages, and niche breadth, and then compared (1) species in the Red Sea known to have been introduced into the Mediterranean (Lessepsian species) and those not known from the Mediterranean (non-Lessepsian); and (2) nonindigenous and indigenous species in the Mediterranean. Lessepsian species identified on plates in the Red Sea demonstrated wider niche breadth than non-Lessepsian species, supporting the niche breadth hypothesis within the native region. No differences were found between Lessepsian and non-Lessepsian species in species abundance and successional stages. In the Mediterranean, nonindigenous species numerically dominated the settlement plates. This precluded robust comparisons of niche breadth between nonindigenous and indigenous species in the invaded region. In conclusion, using Red Sea ascidians as the pool of potential invaders, we found clear evidence supporting the niche breadth hypothesis in the native region. We suggest that such patterns may often be obscured when conducting trait-based studies in the invaded regions alone. Our findings indicate that quantifying the niche breadth of species in their native regions will improve estimates of invasiveness potential.

SELECTION OF CITATIONS
SEARCH DETAIL