ABSTRACT
Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 base pair region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals in whom it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologues. Using RNA sequencing, we show how 5' splice-site use is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 base pair region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide.
Subject(s)
Mutation , Neurodevelopmental Disorders , RNA, Small Nuclear , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Alleles , Brain/growth & development , Brain/metabolism , Heterozygote , Neurodevelopmental Disorders/genetics , RNA Splice Sites/genetics , RNA, Small Nuclear/genetics , Spliceosomes/genetics , Syndrome , Rare Diseases/genetics , Gene Expression Regulation, DevelopmentalABSTRACT
Mucopolysaccharidosis type VII (MPS VII) is an ultra-rare, life-threatening, progressive disease caused by genetic mutations that affect lysosomal storage/function. MPS VII has an estimated prevalence of <1:1,000,000 and accounts for <3% of all MPS diagnoses. Given the rarity of MPS VII, comprehensive information on the disease is limited and we present a review of the current understanding. In MPS VII, intracellular glycosaminoglycans accumulate due to a deficiency in the lysosomal enzyme that is responsible for their degradation, ß-glucuronidase, which is encoded by the GUSB gene. MPS VII has a heterogeneous presentation. Features can manifest across multiple systems and can vary in severity, age of onset and progression. The single most distinguishing clinical feature of MPS VII is non-immune hydrops fetalis (NIHF), which presents during pregnancy. MPS VII usually presents within one month of life and become more prominent at 3 to 4 years of age; key features are skeletal deformities, hepatosplenomegaly, coarse facies, and cognitive impairment, although phenotypic variation is a hallmark. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy with vestronidase alfa. Care should be individualized for each patient. Development of consensus guidelines for MPS VII management and treatment is needed, as consolidation of expert knowledge and experience (for example, through the MPS VII Disease Monitoring Program) may provide a significant positive impact to patients.
Subject(s)
Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis VII , Pregnancy , Female , Humans , Mucopolysaccharidosis VII/diagnosis , Mucopolysaccharidosis VII/genetics , Mucopolysaccharidosis VII/therapy , Glucuronidase/metabolism , Hepatomegaly , Splenomegaly , Glycosaminoglycans , Rare Diseases/drug therapyABSTRACT
Mucopolysaccharidosis type I (MPS I)/Hurler syndrome newborn screening was added to the recommended uniform screening panel (RUSP) in 2016. As states have added screening for MPS I, programs have reported increased rates of false positives. Reasons for false positive screens include carrier status, true false positive, late-onset/attenuated forms, and in about half of cases, pseudodeficiency alleles. These alleles have DNA variants that can cause falsely decreased enzyme activity on biochemical enzyme studies and have increased frequency in individuals of African American and African descent. We describe the District of Columbia (DC) experience with MPS I screening from December 2017 to February 2019. In the context of a review of the literature on newborn screening and family experiences and this DC-based experience, we offer potential solutions to address preliminary concerns regarding this screening. The impact of overrepresentation of screen positives in a minority group and unintentional creation of health disparities and community wariness regarding medical genetics evaluations must be considered to improve the newborn screen programs nationally and internationally.
Subject(s)
Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/epidemiology , Neonatal Screening , Black or African American/genetics , Alleles , Dried Blood Spot Testing , Ethnicity/genetics , Female , Humans , Infant, Newborn , Male , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/pathologyABSTRACT
Introduction: High sustained anti-rhGAA antibody titers (HSAT; ≥12,800) are directly linked to reduced efficacy of enzyme replacement therapy (ERT) and subsequent clinical deterioration in infantile-onset Pompe disease (IOPD). We have previously demonstrated the safety and effectiveness of a bortezomib-based immune-tolerance induction (ITI) regimen (bortezomib, rituximab, methotrexate, and IVIG) in eliminating HSAT. Methods: Here, we describe two IOPD cases (patients 6 and 8) who developed HSAT at 8 and 10 weeks on ERT despite transient low-dose methotrexate ITI administration in the ERT-naïve setting and were treated with a bortezomib-based ITI regimen, and we compare their courses to a series of six historical patients (patients 1-5, and 7) with a similar presentation who exemplify our evolving approach to treatment. Results: In total, patients 6 and 8 received 16 and 8 doses of bortezomib (4 doses=1 cycle) respectively reducing titers from 25,600 to seronegative, but differences in the course of their therapy were instructive regarding the optimal approach to initial treatment of HSAT; specifically, patient 6 was treated initially with only a single course of bortezomib rescue therapy, while patient 8 received two back-to-back courses. Patient 8 received IVIG therapy throughout the immunosuppression whereas patient 6 received IVIG therapy and was switched to subcutaneous IgG replacement. Patient 6 had a transient reduction in anti-rhGAA antibodies, after receiving a single initial cycle of bortezomib, but had a recurrence of high anti-rhGAA antibody titer after 160 weeks that required 3 additional cycles of bortezomib to ultimately achieve tolerance. In contrast, patient 8 achieved tolerance after being given two consecutive cycles of bortezomib during their initial treatment and had B cell recovery by week 54. Since the reduction in anti-rhGAA antibodies, both patients are doing well clinically, and have decreasing ALT, AST, and CK. No major infections leading to interruption of treatment were observed in either patient. The bortezomib-based ITI was safe and well-tolerated, and patients continue to receive ERT at 40 mg/kg/week. Discussion: These case studies and our previous experience suggest that to achieve an effective reduction of anti-rhGAA antibodies in the setting of HSAT, bortezomib should be initiated at the earliest sign of high anti-rhGAA antibodies with a minimum of two consecutive cycles as shown in the case of patient 8. It is important to note that, despite initiation of ERT at age 2.3 weeks, patient 8 quickly developed HSAT. We recommend close monitoring of anti-rhGAA antibodies and early intervention with ITI as soon as significantly elevated anti-rhGAA antibody titers are noted.
Subject(s)
Glycogen Storage Disease Type II , Humans , Infant, Newborn , Bortezomib/therapeutic use , Glycogen Storage Disease Type II/diagnosis , Immunoglobulins, Intravenous/therapeutic use , Immunomodulation , Methotrexate/therapeutic use , Treatment OutcomeABSTRACT
BACKGROUND: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare, autosomal recessive, debilitating, progressive lysosomal storage disease caused by reduced activity of ß-glucuronidase (GUS) enzyme. Vestronidase alfa (recombinant human GUS) intravenous enzyme replacement therapy is an approved treatment for patients with MPS VII. METHODS: This disease monitoring program (DMP) is an ongoing, multicenter observational study collecting standardized real-world data from patients with MPS VII (N ≈ 50 planned) treated with vestronidase alfa or any other management approach. Data are monitored and recorded in compliance with Good Clinical Practice guidelines and planned interim analyses of captured data are performed annually. Here we summarize the safety and efficacy outcomes as of 17 November 2022. RESULTS: As of the data cutoff date, 35 patients were enrolled: 28 in the Treated Group and seven in the Untreated Group. Mean (SD) age at MPS VII diagnosis was 4.5 (4.0) years (range, 0.0 to 12.4 years), and mean (SD) age at DMP enrollment was 13.9 (11.1) years (range, 1.5 to 50.2 years). Ten patients (29%) had a history of nonimmune hydrops fetalis. In the 23 patients who initiated treatment prior to DMP enrollment, substantial changes in mean excretion from initial baseline to DMP enrollment were observed for the three urinary glycosaminoglycans (uGAGs): dermatan sulfate (DS), -84%; chondroitin sulfate (CS), -55%; heparan sulfate (HS), -42%. Also in this group, mean reduction from initial baseline to months 6, 12, and 24 were maintained for uGAG DS (-84%, -87%, -89%, respectively), CS (-70%, -71%, -76%, respectively), and HS (+ 3%, -32%, and - 41%, respectively). All adverse events (AEs) were consistent with the known vestronidase alfa safety profile. No patients discontinued vestronidase alfa. One patient died. CONCLUSIONS: To date, the DMP has collected invaluable MPS VII disease characteristic data. The benefit-risk profile of vestronidase alfa remains unchanged and favorable for its use in the treatment of pediatric and adult patients with MPS VII. Reductions in DS and CS uGAG demonstrate effectiveness of vestronidase alfa to Month 24. Enrollment is ongoing.
Subject(s)
Enzyme Replacement Therapy , Glucuronidase , Mucopolysaccharidosis VII , Recombinant Proteins , Humans , Mucopolysaccharidosis VII/drug therapy , Glucuronidase/therapeutic use , Glucuronidase/metabolism , Male , Child, Preschool , Female , Child , Enzyme Replacement Therapy/methods , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Infant , Longitudinal Studies , AdolescentABSTRACT
Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals.
ABSTRACT
The histone H3 variant H3.3, encoded by two genes H3-3A and H3-3B, can replace canonical isoforms H3.1 and H3.2. H3.3 is important in chromatin compaction, early embryonic development, and lineage commitment. The role of H3.3 in somatic cancers has been studied extensively, but its association with a congenital disorder has emerged just recently. Here we report eleven de novo missense variants and one de novo stop-loss variant in H3-3A (n = 6) and H3-3B (n = 6) from Baylor Genetics exome cohort (n = 11) and Matchmaker Exchange (n = 1), of which detailed phenotyping was conducted for 10 individuals (H3-3A = 4 and H3-3B = 6) that showed major phenotypes including global developmental delay, short stature, failure to thrive, dysmorphic facial features, structural brain abnormalities, hypotonia, and visual impairment. Three variant constructs (p.R129H, p.M121I, and p.I52N) showed significant decrease in protein expression, while one variant (p.R41C) accumulated at greater levels than wild-type control. One H3.3 variant construct (p.R129H) was found to have stronger interaction with the chaperone death domain-associated protein 6.
ABSTRACT
During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept is strengthened by the fact that activated monocytic cells adhere to immobilized recombinant CD13. Furthermore, treatment with anti-CD13 antibodies in a murine model of peritonitis results in a decrease in leukocyte infiltration into the peritoneum, suggesting a potential role for CD13 in leukocyte trafficking in vivo. Therefore, this work supports a new direction for CD13 biology, where these cell surface molecules act as true molecular interfaces that induce and participate in critical inflammatory cell interactions.
Subject(s)
CD13 Antigens/physiology , Cell Adhesion/physiology , Endothelium, Vascular/physiology , Monocytes/physiology , Animals , Antibodies, Monoclonal/pharmacology , Antigens, CD/physiology , CD13 Antigens/immunology , CD13 Antigens/pharmacology , Cell Adhesion/drug effects , Disease Models, Animal , Endothelium, Vascular/drug effects , Female , Humans , Mice , Mice, Inbred Strains , Monocytes/drug effects , Peritonitis/physiopathology , Recombinant Proteins/pharmacology , Umbilical Veins/physiologyABSTRACT
Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the ß1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/ß1 integrin axis may occur in other tumors.
Subject(s)
Glutamate Carboxypeptidase II/metabolism , Membrane Glycoproteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Animals , Blotting, Western , Cell Line, Tumor , Cell Survival/genetics , Disease Progression , Female , Gene Expression Profiling/methods , Gene Knockdown Techniques , Glutamate Carboxypeptidase II/genetics , Male , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptor, IGF Type 1/metabolismABSTRACT
BACKGROUND: Aberrant growth of blood vessels in the eye forms the basis of many incapacitating diseases and currently the majority of patients respond to anti-angiogenic therapies based on blocking the principal angiogenic growth factor, vascular endothelial growth factor (VEGF). While highly successful, new therapeutic targets are critical for the increasing number of individuals susceptible to retina-related pathologies in our increasingly aging population. Prostate specific membrane antigen (PSMA) is a cell surface peptidase that is absent on normal tissue vasculature but is highly expressed on the neovasculature of most solid tumors, where we have previously shown to regulate angiogenic endothelial cell invasion. Because pathologic angiogenic responses are often triggered by distinct signals, we sought to determine if PSMA also contributes to the pathologic angiogenesis provoked by hypoxia of the retina, which underlies many debilitating retinopathies. METHODOLOGY/PRINCIPAL FINDINGS: Using a mouse model of oxygen-induced retinopathy, we found that while developmental angiogenesis is normal in PSMA null mice, hypoxic challenge resulted in decreased retinal vascular pathology when compared to wild type mice as assessed by avascular area and numbers of vascular tufts/glomeruli. The vessels formed in the PSMA null mice were more organized and highly perfused, suggesting a more 'normal' phenotype. Importantly, the decrease in angiogenesis was not due to an impaired hypoxic response as levels of pro-angiogenic factors are comparable; indicating that PSMA regulation of angiogenesis is independent of VEGF. Furthermore, both systemic and intravitreal administration of a PSMA inhibitor in wild type mice undergoing OIR mimicked the PSMA null phenotype resulting in improved retinal vasculature. CONCLUSIONS/SIGNIFICANCE: Our data indicate that PSMA plays a VEGF-independent role in retinal angiogenesis and that the lack of or inhibition of PSMA may represent a novel therapeutic strategy for treatment of angiogenesis-based ocular diseases.
Subject(s)
Antigens, Surface/biosynthesis , Gene Expression Regulation , Glutamate Carboxypeptidase II/biosynthesis , Retinal Neovascularization/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Membrane/metabolism , Hydrogen-Ion Concentration , Hypoxia , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Oxygen/metabolism , Peptide Hydrolases/chemistry , Perfusion , Phenotype , Retina/metabolism , Retina/pathology , Retinal Vein/pathologyABSTRACT
The robust and consistent expression of the CD13 cell surface marker on very early as well as differentiated myeloid hematopoietic cells has prompted numerous investigations seeking to define roles for CD13 in myeloid cells. To address the function of myeloid CD13 directly, we created a CD13 null mouse and assessed the responses of purified primary macrophages or DCs from WT and CD13 null animals in cell assays and inflammatory disease models, where CD13 has been implicated previously. We find that mice lacking CD13 develop normally with normal hematopoietic profiles except for an increase in thymic but not peripheral T cell numbers. Moreover, in in vitro assays, CD13 appears to be largely dispensable for the aspects of phagocytosis, proliferation, and antigen presentation that we tested, although we observed a slight decrease in actin-independent erythrocyte uptake. However, in agreement with our published studies, we show that lack of monocytic CD13 completely ablates anti-CD13-dependent monocyte adhesion to WT endothelial cells. In vivo assessment of four inflammatory disease models showed that lack of CD13 has little effect on disease onset or progression. Nominal alterations in gene expression levels between CD13 WT and null macrophages argue against compensatory mechanisms. Therefore, although CD13 is highly expressed on myeloid cells and is a reliable marker of the myeloid lineage of normal and leukemic cells, it is not a critical regulator of hematopoietic development, hemostasis, or myeloid cell function.