ABSTRACT
Vibrational coherences in ultrafast pump-probe (PP) and 2D electronic spectroscopy (2DES) provide insights into the excited state dynamics of molecules. Femtosecond coherence spectra and 2D beat maps yield information about displacements of excited state surfaces for key vibrational modes. Half-broadband 2DES uses a PP configuration with a white light continuum probe to extend the detection range and resolve vibrational coherences in the excited state absorption (ESA). However, the interpretation of these spectra is difficult as they are strongly dependent on the spectrum of the pump laser and the relative displacement of the excited states along the vibrational coordinates. We demonstrate the impact of these convoluting factors for a model based upon cresyl violet. A careful consideration of the position of the pump spectrum can be a powerful tool in resolving the ESA coherences to gain insights into excited state displacements. This paper also highlights the need for caution in considering the spectral window of the pulse when interpreting these spectra.
ABSTRACT
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300Ć¢ĀĀ fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.
ABSTRACT
We show that the second-order, two-time correlation functions for phonons and photons emitted from a vibronic molecule in a thermal bath result in bunching and antibunching (a purely quantum effect), respectively. Signatures relating to phonon exchange with the environment are revealed in photon-photon correlations. We demonstrate that cross-correlation functions have a strong dependence on the order of detection giving insight into how phonon dynamics influences the emission of light. This work offers new opportunities to investigate quantum effects in condensed-phase molecular systems.
ABSTRACT
We elucidate the influence of the system-bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density. The resultant spectra are analyzed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate the efficacy of the two models. The HVM produces 2D spectra with accurate peak positional information, while the BVM is well suited to modeling dynamic peak broadening. For the monomer, both models produce equivalent spectra in the limit where additional damping associated with the underdamped vibration in the BVM approaches zero. This is supported by analytical results. However, for the homodimer, the BVM spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The computational efficiency of the two models is also discussed in order to inform us of the most appropriate use of each method.
ABSTRACT
Blue light absorbing flavoproteins play important roles in a variety of photobiological processes. Consequently, there have been numerous investigations of their excited state structure and dynamics, in particular by time-resolved vibrational spectroscopy. The isoalloxazine chromophore of the flavoprotein cofactors has been studied in detail by time-resolved Raman, lending it a benchmark status for mode assignments in excited electronic states of large molecules. However, detailed comparisons of calculated and measured spectra have proven challenging, as there are many more modes calculated than are observed, and the role of resonance enhancement is difficult to characterize in excited electronic states. Here we employ a recently developed approach due to Elles and co-workers ( J. Phys. Chem. A 2018, 122, 8308-8319) for the calculation of resonance-enhanced Raman spectra of excited states and apply it to the lowest singlet and triplet excited states of the isoalloxazine chromophore. There is generally good agreement between calculated and observed enhancements, which allows assignment of vibrational bands of the flavoprotein cofactors to be refined. However, some prominently enhanced bands are found to be absent from the calculations, suggesting the need for further development of the theory.
ABSTRACT
The focus of this work is on a microscopic quantum electrodynamical understanding of cumulative quantum effects in resonance energy transfer occurring in an isotropic and disordered medium. In particular, we consider quantum coherence, defined in terms of interferences between Feynman pathways, and analyze pure-amplitude and phase cross terms that appear in the Fermi golden rule rate equation that results from squaring the matrix element for mediated energy transfer. It is shown that pure-amplitude terms dominate in the near-zone when chromophores are close in proximity to one another (within a few nanometers), and phase cross terms dominate toward the far-zone when phase differences between different Feynman pathways begin to emerge. This can be understood in terms of physical attributes of the mediating photon, whose character becomes more real at long distances, coinciding with vanishing longitudinal components of the field, as transverse components begin to dominate.
ABSTRACT
The excited-state energy levels of molecular dimers and aggregates play a critical role in their photophysical behavior and an understanding of the photodynamics in such structures is important for developing applications such as photovoltaics and optoelectronic devices. Here, exciton transitions in two different covalently bound PBI dimers are studied by two-dimensional electronic spectroscopy (2DES), a powerful spectroscopic method, providing the most complete picture of vibronic transitions in molecular systems. The data are accurately reproduced using the equation of motion-phase matching approach. The unambiguous presence of one-exciton to two-exciton transitions are captured in our results and described in terms of a molecular exciton energy level scheme based on the Kasha model. Furthermore, the results are supported by comparative measurements with the PBI monomer and another dimer in which the interchromophore distance is increased.
ABSTRACT
Non-Markovian effects in open quantum systems are central to understanding spectral lineshape. Here, we quantify the non-Markovianity associated with both overdamped and underdamped vibrations in terms of information flow between the bath and the system and compare this with the broadening and ellipticity of two-dimensional spectra. Using the Breuer Laine Piilo (BLP) measure, we link the well-known stochastic models for spectral lineshape with modern quantum information theory. Specifically, we study the effect of non-Markovianity in a system in contact with underdamped vibrations and examine the differences observed on increasing the damping to the overdamped limit. The open quantum system dynamics are evolved using the hierarchical equations of motion, efficiently terminated with a Markovian cutoff, where separate hierarchies are derived for the underdamped and overdamped environments. It is shown that the BLP measure is quantitatively correlated with the ellipticity of two-dimensional spectra and memory effects are more pronounced in underdamped environments, due to the long-lived feedback of information between the system and its bath, compared to overdamped environments. Environmental signatures in spectral lineshapes emerge as a result of information flow from the bath back into the system.
ABSTRACT
Two-dimensional optical spectroscopy is a powerful technique for the probing of coherent quantum superpositions. Recently, the finite width of the laser spectrum has been employed to selectively tune experiments for the study of particular coherences. This involves the exclusion of certain transition frequencies, which results in the elimination of specific Liouville pathways. The rigorous analysis of such experiments requires the use of ever more sophisticated theoretical models for the optical spectroscopy of electronic and vibronic systems. Here we develop a nonimpulsive and non-Markovian model, which combines an explicit definition of the laser spectrum, via the equation of motion-phase matching approach (EOM-PMA), with the hierarchical equations of motion (HEOM). This theoretical framework is capable of simulating the 2D spectroscopy of vibronic systems with low frequency modes, coupled to environments of intermediate and slower time scales. In order to demonstrate the spectral filtering of vibronic coherences, we examine the elimination of lower energy peaks from the 2D spectra of a zinc porphyrin monomer upon blue-shifting the laser spectrum. The filtering of Liouville pathways is revealed through the disappearance of peaks from the amplitude spectra for a coupled vibrational mode.
ABSTRACT
Open quantum systems often operate in the non-Markovian regime where a finite history of a trajectory is intrinsic to its evolution. The degree of non-Markovianity for a trajectory may be measured in terms of the amount of information flowing from the bath back into the system. In this study, we consider how information flows through the auxiliary density operators (ADOs) in the hierarchical equations of motion. We consider three cases for a range of baths, underdamped, intermediate, and overdamped. By understanding how information flows, we are able to determine the relative importance of different ADOs within the hierarchy. We show that ADOs sharing a common Matsubara axis behave similarly, while ADOs on different Matsubara axes behave differently. Using this knowledge, we are able to truncate hierarchies significantly, thus reducing the computation time, while obtaining qualitatively similar results. This is illustrated by comparing 2D electronic spectra for a molecule with an underdamped vibration subsumed into the bath spectral density.
ABSTRACT
Knowledge of relative displacements between potential energy surfaces (PES) is critical in spectroscopy and photochemistry. Information on displacements is encoded in vibrational coherences. Here we apply ultrafast two-dimensional electronic spectroscopy in a pump-probe half-broadband (HB2DES) geometry to probe the ground- and excited-state potential landscapes of cresyl violet. 2D coherence maps reveal that while the coherence amplitude of the dominant 585 cm-1 Raman-active mode is mainly localized in the ground-state bleach and stimulated emission regions, a 338 cm-1 mode is enhanced in excited-state absorption. Modeling these data with a three-level displaced harmonic oscillator model using the hierarchical equation of motion-phase matching approach (HEOM-PMA) shows that the S1 Ć¢ĀĀ S0 PES displacement is greater along the 585 cm-1 coordinate than the 338 cm-1 coordinate, while Sn Ć¢ĀĀ S1 displacements are similar along both coordinates. HB2DES is thus a powerful tool for exploiting nuclear wavepackets to extract quantitative multidimensional, vibrational coordinate information across multiple PESs.
ABSTRACT
In this work we undertake a systematic study of the optical chirality density of Laguerre-Gaussian and Bessel laser beams tightly focused into nanoscale volumes. In particular we highlight the unique contributions to optical chirality from longitudinal electromagnetic fields, i.e. light that is polarised in the direction of propagation. The influence that polarisation, spin and orbital angular momentum, radial index, degree of focusing, and diffraction has on the optical chirality is studied. The results show that the optical chirality of structured light beams at the nanoscale is significantly richer than that of the well-known circularly polarised propagating plane wave. The work lays the foundation for chiral nanophotonics, and chiral quantum optics based on structured light illumination.
ABSTRACT
Flavoproteins are important blue light sensors in photobiology and play a key role in optogenetics. The characterization of their excited state structure and dynamics is thus an important objective. Here, we present a detailed study of excited state vibrational spectra of flavin mononucleotide (FMN), in solution and bound to the LOV-2 (Light-Oxygen-Voltage) domain of Avena sativa phototropin. Vibrational frequencies are determined for the optically excited singlet state and the reactive triplet state, through resonant ultrafast femtosecond stimulated Raman spectroscopy (FSRS). To assign the observed spectra, vibrational frequencies of the excited states are calculated using density functional theory, and both measurement and theory are applied to four different isotopologues of FMN. Excited state mode assignments are refined in both states, and their sensitivity to deuteration and protein environment are investigated. We show that resonant FSRS provides a useful tool for characterizing photoactive flavoproteins and is able to highlight chromophore localized modes and to record hydrogen/deuterium exchange.
Subject(s)
Flavin Mononucleotide , Vibration , Cryptochromes , Light , Oxygen , Tumor Necrosis Factor Ligand Superfamily Member 14ABSTRACT
BACKGROUND: A telestroke program, known as the Remote Evaluation for Acute Ischemic Stroke program, has been implemented in Georgia since 2003. This study examined whether a hospital's participation in a telestroke network was associated with improvement in clinical outcomes and quality indicators. METHODS AND RESULTS: An observational study was conducted using data from the Georgia Coverdell Acute Stroke Registry between September 2005 and September 2016 for patients aged ≥18 years with ischemic stroke. We use a difference-in-differences approach to compare the following clinical outcomes and quality indicators among those admitted at hospitals within and outside of the Remote Evaluation for Acute Ischemic Stroke network: tPA (tissue-type plasminogen activator) use, complications related to tPA use, door-to-needle time, ambulation at discharge, discharge status, and destination. Logistic regression models and a propensity score weighting approach were performed to adjust for patients' age, sex, race, insurance coverage, arrival mode, ambulatory status before the current stroke, stroke severity, medical history, admission time, and hospital bed size. A total of 25 494 patients with ischemic stroke admitted at 15 nonteaching hospitals located outside of the Atlanta metropolitan area were included in the analysis. After propensity score weighting, hospitals participated in a telestroke network was not associated with a significant increase in the rate of tPA use, while it was significantly associated with a modest decline in the rate of complications related to tPA (-5.9%; 95% CI, -9.2% to -2.6%). Telestroke participation showed no significant difference in other clinical outcomes and quality measures except for a marginally significant decrease in in-hospital mortality (-1.1%; 95% CI, -2.2% to -0.1%). CONCLUSIONS: Although a slight decrease in tPA complication was observed among hospitals participating in the telestroke network, overall the impact of telestroke participation on a hospital's stroke care quality was not statistically significant based on our observational study.
Subject(s)
Brain Ischemia/therapy , Delivery of Health Care, Integrated/organization & administration , Fibrinolytic Agents/administration & dosage , Quality Improvement/organization & administration , Quality Indicators, Health Care/organization & administration , Stroke/therapy , Telemedicine/organization & administration , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , Aged , Aged, 80 and over , Brain Ischemia/diagnosis , Brain Ischemia/mortality , Female , Fibrinolytic Agents/adverse effects , Georgia/epidemiology , Hospital Mortality , Humans , Male , Middle Aged , Registries , Risk Assessment , Risk Factors , Stroke/diagnosis , Stroke/mortality , Thrombolytic Therapy/adverse effects , Thrombolytic Therapy/mortality , Time Factors , Tissue Plasminogen Activator/adverse effects , Treatment OutcomeABSTRACT
OBJECTIVES: The number and types of inpatients given inadequate prophylaxis for venous thromboembolism (VTE) are not known; patients receive less than appropriate prophylaxis with some frequency. METHODS: Initially we evaluated VTE prophylaxis at a community hospital by comparing prophylaxis patterns in adult inpatients for whom some prophylaxis was indicated. Patients were categorized as medical, general surgery, and orthopedic, then categorized as "appropriate," "suboptimal," or "none" in terms of VTE prophylaxis. After initial data collection, we performed an intervention on medical patients using a VTE risk assessment tool; a printed evaluation containing the VTE risk assessment score with related VTE prophylaxis regimens was placed in the patients' charts, after which prophylaxis patterns were compared between preintervention and postintervention medical patients. RESULTS: Initial data collected from 116 medical, 110 general surgery, and 72 orthopedic patients (n = 298) showed that there was a significant association between diagnosis category and level of observed appropriate VTE prophylaxis (P < 0.0001). Fifty-six medical patients (48%) received no prophylaxis, compared to 40 (36%) general surgery patients and 12 (17%) orthopedic patients. In the second phase, 74 medical patients on whom the intervention was performed were compared to 116 preintervention medical patients (n = 190). The findings showed that intervention status had a significant association with level of appropriate VTE prophylaxis (P < 0.0001). CONCLUSION: An increase in appropriate VTE prophylaxis was observed after a system-level intervention.
Subject(s)
Hospitalization , Quality Assurance, Health Care , Venous Thromboembolism/prevention & control , Adult , Aged , Aged, 80 and over , Anticoagulants/administration & dosage , Dose-Response Relationship, Drug , Drug Administration Schedule , Enoxaparin/administration & dosage , Female , Guideline Adherence , Heparin/administration & dosage , Hospitals, Community , Humans , Injections, Subcutaneous , Intermittent Pneumatic Compression Devices , Male , Middle Aged , Practice Guidelines as Topic , Quality Indicators, Health Care , Risk Assessment , Stockings, Compression , Treatment Outcome , Venous Thromboembolism/etiology , Warfarin/administration & dosageABSTRACT
Over the course of a single year, Cornerstone Health Care, a multispecialty group practice in North Carolina, redesigned the underlying care models for 5 of its highest-risk populations-late-stage congestive heart failure, oncology, Medicare-Medicaid dual eligibles, those with 5 or more chronic conditions, and the most complex patients with multiple late-stage chronic conditions. At the 1-year mark, the results of the program were analyzed. Overall costs for the patients studied were reduced by 12.7% compared to the year before enrollment. All fully implemented programs delivered between 10% and 16% cost savings. The key area for savings factor was hospitalization, which was reduced by 30% across all programs. The greatest area of cost increase was "other," a category that consisted in large part of hospice services. Full implementation was key; 2 primary care sites that reverted to more traditional models failed to show the same pattern of savings.