Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Language
Publication year range
1.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-441968

ABSTRACT

Vaccines targeting SARS-CoV-2 have gained emergency FDA approval, however the breadth against emerging variants and the longevity of protection remains unknown. Post-immunization boosting may be required, perhaps on an annual basis if the virus becomes an endemic pathogen. Seasonal influenza virus vaccines are already developed every year, an undertaking made possible by a robust global vaccine production and distribution infrastructure. To create a seasonal combination vaccine targeting influenza viruses and SARS-CoV-2 that is also amenable to frequent reformulation, we have developed a recombinant influenza A virus (IAV) genetic platform that "reprograms" the virus to package an immunogenic domain of the SARS-CoV-2 spike (S) protein onto IAV particles. Vaccination with this combination vaccine elicits neutralizing antibodies and provides protection from lethal challenge with both pathogens. This technology may allow for leveraging of established influenza vaccine infrastructure to generate a cost-effective and scalable seasonal vaccine solution for both influenza and coronaviruses.

2.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-497634

ABSTRACT

SARS-CoV-2 Omicron variants have generated a world-wide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of antibodies induced by vaccination. Here, we describe the SARS-CoV-2 neutralizing SP1-77 antibody that was generated from a humanized mouse model with a single human VH1-2 and V{kappa}1-33-associated with immensely diverse complementarity-determining-region-3 (CDR3) sequences. SP1-77 potently and broadly neutralizes SARS-CoV-2 variants of concern and binds the SARS-CoV-2 spike protein receptor-binding-domain (RBD) via a novel-CDR3-based mode. SP1-77 does not block RBD-binding to the ACE2-receptor or endocytosis step of viral entry, but rather blocks membrane fusion. Our findings provide the first mechanistic insight into how a non-ACE2 blocking antibody potently neutralizes SARS-CoV-2, which may inform strategies for designing vaccines that robustly neutralize current and future SARS-CoV-2 variants.

3.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-462915

ABSTRACT

The COVID-19 pandemic persists as a global health crisis for which curative treatment has been elusive. Development of effective and safe anti-SARS-CoV-2 therapies remains an urgent need. SARS-CoV-2 entry into cells requires specific host proteases including TMPRSS2 and Cathepsin L (Ctsl)1-3, but there has been no reported success in inhibiting host proteases for treatment of SARS-CoV-2 pathogenesis in vivo. Here we have developed a lung Ctsl mRNA-targeted, CRISPR/Cas13d-based nanoparticle therapy to curb fatal SARS-CoV-2 infection in a mouse model. We show that this nanotherapy can decrease lung Ctsl expression in normal mice efficiently, specifically, and safely. Importantly, this lung-selective Ctsl-targeted nanotherapy significantly extended the survival of lethally SARS-CoV-2 infected mice by decreasing lung virus burden, reducing expression of pro-inflammatory cytokines/chemokines, and diminishing the severity of pulmonary interstitial inflammation. Additional in vitro analyses demonstrated that Cas13d-mediated Ctsl knockdown inhibited infection mediated by the spike protein of SARS-CoV-1, SARS-CoV-2, and more importantly, the authentic SARS-CoV-2 B.1.617.2 Delta variant, regardless of TMPRSS2 expression status. Our results demonstrate the efficacy and safety of a lung-selective, Ctsl-targeted nanotherapy against infection by SARS-CoV-2 and likely other emerging coronaviruses, forming a basis for investigation of this approach in clinical trials.

4.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-20155507

ABSTRACT

In order to elucidate novel aspects of the host response to SARS-CoV-2 we performed RNA sequencing on peripheral blood samples across 77 timepoints from 46 subjects with COVID-19 and compared them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a conserved transcriptomic response in peripheral blood that is heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, that persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95). The transcriptome in peripheral blood reveals unique aspects of the immune response in COVID-19 and provides for novel biomarker-based approaches to diagnosis.

5.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-412155

ABSTRACT

SARS-CoV-2 infection triggers highly variable host responses and causes varying degrees of illness in humans. We sought to harness the peripheral blood mononuclear cell (PBMC) response over the course of illness to provide insight into COVID-19 physiology. We analyzed PBMCs from subjects with variable symptom severity at different stages of clinical illness before and after IgG seroconversion to SARS-CoV-2. Prior to seroconversion, PBMC transcriptomes did not distinguish symptom severity. In contrast, changes in chromatin accessibility were associated with symptom severity. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif occupancy for individual PBMC cell types. The most extensive remodeling occurred in CD14+ monocytes where sub-populations with distinct chromatin accessibility profiles were associated with disease severity. Our findings indicate that pre-seroconversion chromatin remodeling in certain innate immune populations is associated with divergence in symptom severity, and the identified transcription factors, regulatory elements, and downstream pathways provide potential prognostic markers for COVID-19 subjects. One sentence summaryChromatin accessibility in immune cells from COVID-19 subjects is remodeled prior to seroconversion to reflect disease severity.

6.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-477784

ABSTRACT

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor binding domain (RBD) and neutralizing antibody epitope presentation affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.

7.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-431492

ABSTRACT

Betacoronaviruses (betaCoVs) caused the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, and now the SARS-CoV-2 pandemic. Vaccines that elicit protective immune responses against SARS-CoV-2 and betaCoVs circulating in animals have the potential to prevent future betaCoV pandemics. Here, we show that immunization of macaques with a multimeric SARS-CoV-2 receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052-Alum elicited cross-neutralizing antibody responses against SARS-CoV-1, SARS-CoV-2, batCoVs and the UK B.1.1.7 SARS-CoV-2 mutant virus. Nanoparticle vaccination resulted in a SARS-CoV-2 reciprocal geometric mean neutralization titer of 47,216, and robust protection against SARS-CoV-2 in macaque upper and lower respiratory tracts. Importantly, nucleoside-modified mRNA encoding a stabilized transmembrane spike or monomeric RBD protein also induced SARS-CoV-1 and batCoV cross-neutralizing antibodies, albeit at lower titers. These results demonstrate current mRNA vaccines may provide some protection from future zoonotic betaCoV outbreaks, and provide a platform for further development of pan-betaCoV nanoparticle vaccines.

8.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-477915

ABSTRACT

Coronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies in non-human primates (NHPs) against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants. The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 10.6-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.

9.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-424729

ABSTRACT

SARS-CoV-2 neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV-1 infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-{gamma} (Fc{gamma}R)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated Fc{gamma}R-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Nonetheless, three of 31 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can occur in SARS-CoV-2 antibody-infused macaques.

SELECTION OF CITATIONS
SEARCH DETAIL