Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Chem Biol ; 17(7): 784-793, 2021 07.
Article in English | MEDLINE | ID: mdl-34155404

ABSTRACT

Polycomb repressive complex 1 (PRC1) is an essential chromatin-modifying complex that monoubiquitinates histone H2A and is involved in maintaining the repressed chromatin state. Emerging evidence suggests PRC1 activity in various cancers, rationalizing the need for small-molecule inhibitors with well-defined mechanisms of action. Here, we describe the development of compounds that directly bind to RING1B-BMI1, the heterodimeric complex constituting the E3 ligase activity of PRC1. These compounds block the association of RING1B-BMI1 with chromatin and inhibit H2A ubiquitination. Structural studies demonstrate that these inhibitors bind to RING1B by inducing the formation of a hydrophobic pocket in the RING domain. Our PRC1 inhibitor, RB-3, decreases the global level of H2A ubiquitination and induces differentiation in leukemia cell lines and primary acute myeloid leukemia (AML) samples. In summary, we demonstrate that targeting the PRC1 RING domain with small molecules is feasible, and RB-3 represents a valuable chemical tool to study PRC1 biology.


Subject(s)
Polycomb Repressive Complex 1/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Humans , K562 Cells , Models, Molecular , Molecular Structure , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Ubiquitination/drug effects
2.
Bioorg Chem ; 135: 106477, 2023 06.
Article in English | MEDLINE | ID: mdl-36989736

ABSTRACT

Cancer is one of the major causes of mortality and morbidity worldwide. Substantial research efforts have been made to develop new chemical entities with improved anticancer efficacy. 2-Aminobenzothiazole is an important class of heterocycles containing one sulfur and two nitrogen atoms, which is associated with a broad spectrum of medical and pharmacological activities, including antitumor, antibacterial, antimalarial, anti-inflammatory, and antiviral activities. In recent years, an extraordinary collection of potent and low-toxicity 2-aminobenzothiazole compounds have been discovered as new anticancer agents. Herein, we provide a comprehensive review of this class of compounds based on their activities against tumor-related proteins, including tyrosine kinases (CSF1R, EGFR, VEGFR-2, FAK, and MET), serine/threonine kinases (Aurora, CDK, CK, RAF, and DYRK2), PI3K kinase, BCL-XL, HSP90, mutant p53 protein, DNA topoisomerase, HDAC, NSD1, LSD1, FTO, mPGES-1, SCD, hCA IX/XII, and CXCR. In addition, the anticancer potentials of 2-aminobenzothiazole-derived chelators and metal complexes are also described here. Moreover, the design strategies, mechanism of actions, structure-activity relationships (SAR) and more advanced stages of pre-clinical development of 2-aminobenzothiazoles as new anticancer agents are extensively reviewed in this article. Finally, the examples that 2-aminobenzothiazoles showcase an advantage over other heterocyclic systems are also highlighted.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Structure , Neoplasms/drug therapy , Structure-Activity Relationship , Benzothiazoles/chemistry , Benzothiazoles/pharmacology
3.
Nat Chem Biol ; 16(12): 1403-1410, 2020 12.
Article in English | MEDLINE | ID: mdl-32868895

ABSTRACT

The nuclear receptor-binding SET domain (NSD) family of histone methyltransferases is associated with various malignancies, including aggressive acute leukemia with NUP98-NSD1 translocation. While NSD proteins represent attractive drug targets, their catalytic SET domains exist in autoinhibited conformation, presenting notable challenges for inhibitor development. Here, we employed a fragment-based screening strategy followed by chemical optimization, which resulted in the development of the first-in-class irreversible small-molecule inhibitors of the nuclear receptor-binding SET domain protein 1 (NSD1) SET domain. The crystal structure of NSD1 in complex with covalently bound ligand reveals a conformational change in the autoinhibitory loop of the SET domain and formation of a channel-like pocket suitable for targeting with small molecules. Our covalent lead-compound BT5-demonstrates on-target activity in NUP98-NSD1 leukemia cells, including inhibition of histone H3 lysine 36 dimethylation and downregulation of target genes, and impaired colony formation in an NUP98-NSD1 patient sample. This study will facilitate the development of the next generation of potent and selective inhibitors of the NSD histone methyltransferases.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Leukemic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Leukocytes/drug effects , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Binding Sites , Enzyme Inhibitors/chemical synthesis , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kinetics , Leukemia/drug therapy , Leukemia/enzymology , Leukemia/genetics , Leukemia/pathology , Leukocytes/enzymology , Leukocytes/pathology , Models, Molecular , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Signal Transduction , Substrate Specificity , Tumor Cells, Cultured
4.
J Pathol ; 245(3): 324-336, 2018 07.
Article in English | MEDLINE | ID: mdl-29672864

ABSTRACT

Developmental transcription programs are epigenetically regulated by multi-protein complexes, including the menin- and MLL-containing trithorax (TrxG) complexes, which promote gene transcription by depositing the H3K4me3 activating mark at target gene promoters. We recently reported that in Ewing sarcoma, MLL1 (lysine methyltransferase 2A, KMT2A) and menin are overexpressed and function as oncogenes. Small molecule inhibition of the menin-MLL interaction leads to loss of menin and MLL1 protein expression, and to inhibition of growth and tumorigenicity. Here, we have investigated the mechanistic basis of menin-MLL-mediated oncogenic activity in Ewing sarcoma. Bromouridine sequencing (Bru-seq) was performed to identify changes in nascent gene transcription in Ewing sarcoma cells, following exposure to the menin-MLL interaction inhibitor MI-503. Menin-MLL inhibition resulted in early and widespread reprogramming of metabolic processes. In particular, the serine biosynthetic pathway (SSP) was the pathway most significantly affected by MI-503 treatment. Baseline expression of SSP genes and proteins (PHGDH, PSAT1, and PSPH), and metabolic flux through the SSP were confirmed to be high in Ewing sarcoma. In addition, inhibition of PHGDH resulted in reduced cell proliferation, viability, and tumor growth in vivo, revealing a key dependency of Ewing sarcoma on the SSP. Loss of function studies validated a mechanistic link between menin and the SSP. Specifically, inhibition of menin resulted in diminished expression of SSP genes, reduced H3K4me3 enrichment at the PHGDH promoter, and complete abrogation of de novo serine and glycine biosynthesis, as demonstrated by metabolic tracing studies with 13 C-labeled glucose. These data demonstrate that the SSP is highly active in Ewing sarcoma and that its oncogenic activation is maintained, at least in part, by menin-dependent epigenetic mechanisms involving trithorax complexes. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Bone Neoplasms/metabolism , Energy Metabolism , Proto-Oncogene Proteins/metabolism , Sarcoma, Ewing/metabolism , Serine/biosynthesis , Animals , Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Energy Metabolism/drug effects , Energy Metabolism/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Mice, Nude , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Proto-Oncogene Proteins/genetics , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Signal Transduction , Transaminases/genetics , Transaminases/metabolism , Tumor Burden , Xenograft Model Antitumor Assays
5.
Immunol Rev ; 263(1): 279-301, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25510283

ABSTRACT

Over the past several years, there has been an increasing research effort focused on inhibition of protein-protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of preclinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of PPIs highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein-protein interfaces, with the goal to address 'druggability' of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new PPIs and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new PPIs.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Molecular Targeted Therapy , Animals , Clinical Trials as Topic , Computational Biology , Drug Discovery , Humans , Protein Interaction Domains and Motifs/genetics
6.
Gastroenterology ; 153(6): 1555-1567.e15, 2017 12.
Article in English | MEDLINE | ID: mdl-28859856

ABSTRACT

BACKGROUND & AIMS: The multiple endocrine neoplasia, type 1 (MEN1) locus encodes the nuclear protein and tumor suppressor menin. MEN1 mutations frequently cause neuroendocrine tumors such as gastrinomas, characterized by their predominant duodenal location and local metastasis at time of diagnosis. Diffuse gastrin cell hyperplasia precedes the appearance of MEN1 gastrinomas, which develop within submucosal Brunner's glands. We investigated how menin regulates expression of the gastrin gene and induces generation of submucosal gastrin-expressing cell hyperplasia. METHODS: Primary enteric glial cultures were generated from the VillinCre:Men1FL/FL:Sst-/- mice or C57BL/6 mice (controls), with or without inhibition of gastric acid by omeprazole. Primary enteric glial cells from C57BL/6 mice were incubated with gastrin and separated into nuclear and cytoplasmic fractions. Cells were incubated with forskolin and H89 to activate or inhibit protein kinase A (a family of enzymes whose activity depends on cellular levels of cyclic AMP). Gastrin was measured in blood, tissue, and cell cultures using an ELISA. Immunoprecipitation with menin or ubiquitin was used to demonstrate post-translational modification of menin. Primary glial cells were incubated with leptomycin b and MG132 to block nuclear export and proteasome activity, respectively. We obtained human duodenal, lymph node, and pancreatic gastrinoma samples, collected from patients who underwent surgery from 1996 through 2007 in the United States or the United Kingdom. RESULTS: Enteric glial cells that stained positive for glial fibrillary acidic protein (GFAP+) expressed gastrin de novo through a mechanism that required PKA. Gastrin-induced nuclear export of menin via cholecystokinin B receptor (CCKBR)-mediated activation of PKA. Once exported from the nucleus, menin was ubiquitinated and degraded by the proteasome. GFAP and other markers of enteric glial cells (eg, p75 and S100B), colocalized with gastrin in human duodenal gastrinomas. CONCLUSIONS: MEN1-associated gastrinomas, which develop in the submucosa, might arise from enteric glial cells through hormone-dependent PKA signaling. This pathway disrupts nuclear menin function, leading to hypergastrinemia and associated sequelae.


Subject(s)
Duodenum/metabolism , Gastrins/metabolism , Neuroglia/enzymology , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Duodenal Neoplasms/enzymology , Duodenal Neoplasms/genetics , Duodenal Neoplasms/pathology , Duodenum/drug effects , Duodenum/pathology , Gastrinoma/enzymology , Gastrinoma/genetics , Gastrinoma/pathology , Gastrins/genetics , Gene Expression Regulation , Glial Fibrillary Acidic Protein/metabolism , Humans , Hyperplasia , Mice, Inbred C57BL , Mice, Knockout , Neuroglia/drug effects , Proteasome Inhibitors/pharmacology , Proteolysis , Proto-Oncogene Proteins/genetics , Proton Pump Inhibitors/pharmacology , Receptor, Cholecystokinin B/metabolism , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Time Factors , Ubiquitination
8.
Blood ; 124(25): 3730-7, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25305204

ABSTRACT

Lens epithelium-derived growth factor (LEDGF) is a chromatin-associated protein implicated in leukemia and HIV type 1 infection. LEDGF associates with mixed-lineage leukemia (MLL) fusion proteins and menin and is required for leukemic transformation. To better understand the molecular mechanism underlying the LEDGF integrase-binding domain (IBD) interaction with MLL fusion proteins in leukemia, we determined the solution structure of the MLL-IBD complex. We found a novel MLL motif, integrase domain binding motif 2 (IBM2), which binds to a well-defined site on IBD. Point mutations within IBM2 abolished leukemogenic transformation by MLL-AF9, validating that this newly identified motif is essential for the oncogenic activity of MLL fusion proteins. Interestingly, the IBM2 binding site on IBD overlaps with the binding site for the HIV integrase (IN), and IN was capable of efficiently sequestering IBD from the menin-MLL complex. A short IBM2 peptide binds to IBD directly and inhibits both the IBD-MLL/menin and IBD-IN interactions. Our findings show that the same site on IBD is involved in binding to MLL and HIV-IN, revealing an attractive approach to simultaneously target LEDGF in leukemia and HIV.


Subject(s)
HIV Infections/metabolism , HIV Integrase/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Leukemia, Biphenotypic, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Animals , Binding Sites/genetics , HEK293 Cells , HIV Infections/drug therapy , Histone-Lysine N-Methyltransferase , Humans , Immunoprecipitation , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Leukemia, Biphenotypic, Acute/drug therapy , Magnetic Resonance Spectroscopy , Mice, Inbred C57BL , Models, Molecular , Molecular Targeted Therapy , Mutation , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
9.
Biochemistry ; 54(35): 5401-13, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26292256

ABSTRACT

ASH1L (absent, small, or homeotic-like 1) is a histone methyltransferase (HMTase) involved in gene activation that is overexpressed in multiple forms of cancer. Previous studies of ASH1L's catalytic SET domain identified an autoinhibitory loop that blocks access of histone substrate to the enzyme active site. Here, we used both nuclear magnetic resonance and X-ray crystallography to identify conformational dynamics in the ASH1L autoinhibitory loop. Using site-directed mutagenesis, we found that point mutations in the autoinhibitory loop that perturb the structure of the SET domain result in decreased enzyme activity, indicating that the autoinhibitory loop is not a simple gate to the active site but is rather a key feature critical to ASH1L function. We also identified a second loop in the SET-I subdomain of ASH1L that experiences conformational dynamics, and we trapped two different conformations of this loop using crystallographic studies. Mutation of the SET-I loop led to a large decrease in ASH1L enzymatic activity in addition to a significant conformational change in the SET-I loop, demonstrating the importance of the structure and dynamics of the SET-I loop to ASH1L function. Furthermore, we found that three C-terminal chromatin-interacting domains greatly enhance ASH1L enzymatic activity and that ASH1L requires native nucleosome substrate for robust activity. Our study illuminates the role of concerted conformational dynamics in ASH1L function and identifies structural features important for ASH1L enzymatic activity.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Crystallography, X-Ray , Enzyme Activation/physiology , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary
11.
Bioorg Med Chem Lett ; 25(13): 2720-5, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25987377

ABSTRACT

A series of substituted hydroxymethyl piperidine small molecule inhibitors of the protein-protein interaction between menin and mixed lineage leukemia 1 (MLL1) are described. Initial members of the series showed good inhibitory disruption of the menin-MLL1 interaction but demonstrated poor physicochemical and DMPK properties. Utilizing a structure-guided and iterative optimization approach key substituents were optimized leading to inhibitors with cell-based activity, improved in vitro DMPK parameters, and improved half-lives in rodent PK studies leading to MLPCN probe ML399. Ancillary off-target activity remains a parameter for further optimization.


Subject(s)
Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Piperidines/chemistry , Piperidines/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Drug Design , Humans , In Vitro Techniques , Mice , Models, Molecular , Myeloid-Lymphoid Leukemia Protein/chemistry , Piperidines/pharmacokinetics , Protein Interaction Domains and Motifs/drug effects , Proto-Oncogene Proteins/chemistry , Rats , Structure-Activity Relationship
12.
Trends Biochem Sci ; 35(1): 53-61, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19796954

ABSTRACT

The neutral aminopeptidases M1 alanyl aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) of the human malaria parasite Plasmodium falciparum are targets for the development of novel anti-malarial drugs. Although the functions of these enzymes remain unknown, they are believed to act in the terminal stages of haemoglobin degradation, generating amino acids essential for parasite growth and development. Inhibitors of both enzymes are lethal to P. falciparum in culture and kill the murine malaria P. chabaudi in vivo. Recent biochemical, structural and functional studies provide the substrate specificity and mechanistic binding data needed to guide the development of more potent anti-malarial drugs. Together with biological studies, these data form the rationale for choosing PfM1AAP and PfM17LAP as targets for anti-malarial development.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Humans , Malaria, Falciparum/physiopathology , Plasmodium falciparum/enzymology
13.
Blood ; 120(23): 4461-9, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-22936661

ABSTRACT

Menin functions as a critical oncogenic cofactor of mixed lineage leukemia (MLL) fusion proteins in the development of acute leukemias, and inhibition of the menin interaction with MLL fusion proteins represents a very promising strategy to reverse their oncogenic activity. MLL interacts with menin in a bivalent mode involving 2 N-terminal fragments of MLL. In the present study, we reveal the first high-resolution crystal structure of human menin in complex with a small-molecule inhibitor of the menin-MLL interaction, MI-2. The structure shows that the compound binds to the MLL pocket in menin and mimics the key interactions of MLL with menin. Based on the menin-MI-2 structure, we developed MI-2-2, a compound that binds to menin with low nanomolar affinity (K(d) = 22nM) and very effectively disrupts the bivalent protein-protein interaction between menin and MLL. MI-2-2 demonstrated specific and very pronounced activity in MLL leukemia cells, including inhibition of cell proliferation, down-regulation of Hoxa9 expression, and differentiation. Our results provide the rational and essential structural basis to design next generation of inhibitors for effective targeting of the menin-MLL interaction in leukemia and demonstrate a proof of concept that inhibition of complex multivalent protein-protein interactions can be achieved by a small-molecule inhibitor.


Subject(s)
Antineoplastic Agents/therapeutic use , Leukemia/drug therapy , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins/metabolism , Amino Acid Sequence , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Binding Sites/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HEK293 Cells , Histone-Lysine N-Methyltransferase , Humans , Immunoblotting , Immunoprecipitation , Leukemia/pathology , Models, Molecular , Molecular Sequence Data , Mutation , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Protein Binding/drug effects , Protein Structure, Tertiary , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics
14.
Nat Chem Biol ; 8(3): 277-84, 2012 Jan 29.
Article in English | MEDLINE | ID: mdl-22286128

ABSTRACT

Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia/drug therapy , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HEK293 Cells , Histone-Lysine N-Methyltransferase , Humans , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Mice , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship
15.
Leukemia ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890447

ABSTRACT

Chromosomal translocations of the nucleoporin 98 (NUP98) gene are found in acute myeloid leukemia (AML) patients leading to very poor outcomes. The oncogenic activity of NUP98 fusion proteins is dependent on the interaction between Mixed Lineage Leukemia 1 and menin. NUP98-rearranged (NUP98-r) leukemia cells also rely on specific kinases, including CDK6 and/or FLT3, suggesting that simultaneous targeting of these kinases and menin could overcome limited sensitivity to single agents. Here, we found that combinations of menin inhibitor, MI-3454, with kinase inhibitors targeting either CDK6 (Palbociclib) or FLT3 (Gilteritinib) strongly enhance the anti-leukemic effect of menin inhibition in NUP98-r leukemia models. We found strong synergistic effects of both combinations on cell growth, colony formation and differentiation in patient samples with NUP98 translocations. These combinations also markedly augmented anti-leukemic efficacy of menin inhibitor in Patient Derived Xenograft models of NUP98-r leukemia. Despite inhibiting two unrelated kinases, when Palbociclib or Gilteritinib were combined with the menin inhibitor, they affected similar pathways relevant to leukemogenesis, including cell cycle regulation, cell proliferation and differentiation. This study provides strong rationale for clinical translation of the combination of menin and kinase inhibitors as novel treatments for NUP98-r leukemia, supporting the unexplored combinations of epigenetic drugs with kinase inhibitors.

16.
Proc Natl Acad Sci U S A ; 107(6): 2449-54, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20133789

ABSTRACT

Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the X-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the X-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA-M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.


Subject(s)
Aminopeptidases/chemistry , Drug Design , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/metabolism , Antimalarials/chemistry , Antimalarials/metabolism , Antimalarials/pharmacology , Catalysis , Catalytic Domain , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Metals/chemistry , Metals/metabolism , Models, Molecular , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Substrate Specificity
17.
Eur J Med Chem ; 261: 115802, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37713805

ABSTRACT

The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.


Subject(s)
Chemistry, Pharmaceutical , Drug Discovery , Humans , Ethers, Cyclic/chemistry , Ethers, Cyclic/metabolism , Molecular Conformation
18.
Structure ; 31(10): 1200-1207.e5, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37527654

ABSTRACT

ASH1L is a histone methyltransferase that regulates gene expression through methylation of histone H3 on lysine K36. While the catalytic SET domain of ASH1L has low intrinsic activity, several studies found that it can be vastly enhanced by the interaction with MRG15 protein and proposed allosteric mechanism of releasing its autoinhibited conformation. Here, we found that full-length MRG15, but not the MRG domain alone, can enhance the activity of the ASH1L SET domain. In addition, we showed that catalytic activity of MRG15-ASH1L depends on nucleosome binding mediated by MRG15 chromodomain. We found that in solution MRG15 binds to ASH1L, but has no impact on the conformation of the SET domain autoinhibitory loop or the S-adenosylmethionine cofactor binding site. Moreover, MRG15 binding did not impair the potency of small molecule inhibitors of ASH1L. These findings suggest that MRG15 functions as an adapter that enhances ASH1L catalytic activity by recruiting nucleosome substrate.


Subject(s)
Nucleosomes , Transcription Factors , Transcription Factors/metabolism , DNA-Binding Proteins/chemistry , Methylation , Histone-Lysine N-Methyltransferase/chemistry , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism
19.
Cancer Res Commun ; 3(7): 1318-1334, 2023 07.
Article in English | MEDLINE | ID: mdl-37492626

ABSTRACT

Loss of the tumor suppressor protein menin is a critical event underlying the formation of neuroendocrine tumors (NET) in hormone-expressing tissues including gastrinomas. While aberrant expression of menin impairs its tumor suppression, few studies explore the structure-function relationship of clinical multiple endocrine neoplasia, type 1 (MEN1) mutations in the absence of a complete LOH at both loci. Here, we determined whether clinical MEN1 mutations render nuclear menin unstable and lead to its functional inactivation. We studied the structural and functional implications of two clinical MEN1 mutations (R516fs, E235K) and a third variant (A541T) recently identified in 10 patients with gastroenteropancreatic (GEP)-NETs. We evaluated the subcellular localization and half-lives of the mutants and variant in Men1-null mouse embryo fibroblast cells and in hormone-expressing human gastric adenocarcinoma and NET cell lines. Loss of menin function was assessed by cell proliferation and gastrin gene expression assays. Finally, we evaluated the effect of the small-molecule compound MI-503 on stabilizing nuclear menin expression and function in vitro and in a previously reported mouse model of gastric NET development. Both the R516fs and E235K mutants exhibited severe defects in total and subcellular expression of menin, and this was consistent with reduced half-lives of these mutants. Mutated menin proteins exhibited loss of function in suppressing tumor cell proliferation and gastrin expression. Treatment with MI-503 rescued nuclear menin expression and attenuated hypergastrinemia and gastric hyperplasia in NET-bearing mice. Clinically defined MEN1 mutations and a germline variant confer pathogenicity by destabilizing nuclear menin expression. Significance: We examined the function of somatic and germline mutations and a variant of MEN1 sequenced from gastroenteropancreatic NETs. We report that these mutations and variant promote tumor cell growth and gastrin expression by rendering menin protein unstable and prone to increased degradation. We demonstrate that the menin-MLL (mixed lineage leukemia) inhibitor MI-503 restores menin protein expression and function in vitro and in vivo, suggesting a potential novel therapeutic approach to target MEN1 GEP-NETs.


Subject(s)
Multiple Endocrine Neoplasia Type 1 , Pancreatic Neoplasms , Animals , Humans , Mice , Gastrins/genetics , Hormones , Multiple Endocrine Neoplasia Type 1/genetics , Mutation , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics
20.
Cancer Discov ; 13(3): 724-745, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36455589

ABSTRACT

Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. SIGNIFICANCE: NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Mutation , Chromatin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL