Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(7): e2206797120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36757889

ABSTRACT

Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , MicroRNAs , Humans , MicroRNAs/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glycated Hemoglobin , Islets of Langerhans/metabolism , Quantitative Trait Loci/genetics
2.
Diabetologia ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967666

ABSTRACT

AIMS/HYPOTHESIS: Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycaemia, beta cell glucotoxicity and subsequently type 2 diabetes. In this study, we explored the effects of in vitro hyperglycaemic conditions on human pancreatic islet gene expression across 24 h in six pancreatic cell types: alpha; beta; gamma; delta; ductal; and acinar. We hypothesised that genes associated with hyperglycaemic conditions may be relevant to the onset and progression of diabetes. METHODS: We exposed human pancreatic islets from two donors to low (2.8 mmol/l) and high (15.0 mmol/l) glucose concentrations over 24 h in vitro. To assess the transcriptome, we performed single-cell RNA-seq (scRNA-seq) at seven time points. We modelled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Additionally, we integrated genomic features and genetic summary statistics to nominate candidate effector genes. For three of these genes, we functionally characterised the effect on insulin production and secretion using CRISPR interference to knock down gene expression in EndoC-ßH1 cells, followed by a glucose-stimulated insulin secretion assay. RESULTS: In the discrete time models, we identified 1344 genes associated with time and 668 genes associated with glucose exposure across all cell types and time points. In the continuous time models, we identified 1311 genes associated with time, 345 genes associated with glucose exposure and 418 genes associated with interaction effects between time and glucose across all cell types. By integrating these expression profiles with summary statistics from genetic association studies, we identified 2449 candidate effector genes for type 2 diabetes, HbA1c, random blood glucose and fasting blood glucose. Of these candidate effector genes, we showed that three (ERO1B, HNRNPA2B1 and RHOBTB3) exhibited an effect on glucose-stimulated insulin production and secretion in EndoC-ßH1 cells. CONCLUSIONS/INTERPRETATION: The findings of our study provide an in-depth characterisation of the 24 h transcriptomic response of human pancreatic islets to glucose exposure at a single-cell resolution. By integrating differentially expressed genes with genetic signals for type 2 diabetes and glucose-related traits, we provide insights into the molecular mechanisms underlying glucose homeostasis. Finally, we provide functional evidence to support the role of three candidate effector genes in insulin secretion and production. DATA AVAILABILITY: The scRNA-seq data from the 24 h glucose exposure experiment performed in this study are available in the database of Genotypes and Phenotypes (dbGap; https://www.ncbi.nlm.nih.gov/gap/ ) with accession no. phs001188.v3.p1. Study metadata and summary statistics for the differential expression, gene set enrichment and candidate effector gene prediction analyses are available in the Zenodo data repository ( https://zenodo.org/ ) under accession number 11123248. The code used in this study is publicly available at https://github.com/CollinsLabBioComp/publication-islet_glucose_timecourse .

3.
bioRxiv ; 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37333221

ABSTRACT

Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycemia, beta cell glucotoxicity, and ultimately type 2 diabetes (T2D). In this study, we sought to explore the effects of hyperglycemia on human pancreatic islet (HPI) gene expression by exposing HPIs from two donors to low (2.8mM) and high (15.0mM) glucose concentrations over 24 hours, assaying the transcriptome at seven time points using single-cell RNA sequencing (scRNA-seq). We modeled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Across all cell types, we identified 1,528 genes associated with time, 1,185 genes associated with glucose exposure, and 845 genes associated with interaction effects between time and glucose. We clustered differentially expressed genes across cell types and found 347 modules of genes with similar expression patterns across time and glucose conditions, including two beta cell modules enriched in genes associated with T2D. Finally, by integrating genomic features from this study and genetic summary statistics for T2D and related traits, we nominate 363 candidate effector genes that may underlie genetic associations for T2D and related traits.

4.
Cell Metab ; 35(11): 1897-1914.e11, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37858332

ABSTRACT

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional roles of many loci remain unexplored. Here, we engineered isogenic knockout human embryonic stem cell lines for 20 genes associated with T2D risk. We examined the impacts of each knockout on ß cell differentiation, functions, and survival. We generated gene expression and chromatin accessibility profiles on ß cells derived from each knockout line. Analyses of T2D-association signals overlapping HNF4A-dependent ATAC peaks identified a likely causal variant at the FAIM2 T2D-association signal. Additionally, the integrative association analyses identified four genes (CP, RNASE1, PCSK1N, and GSTA2) associated with insulin production, and two genes (TAGLN3 and DHRS2) associated with ß cell sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental line and identified a single likely functional variant at each of 23 T2D-association signals.


Subject(s)
Diabetes Mellitus, Type 2 , Human Embryonic Stem Cells , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Human Embryonic Stem Cells/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Insulin-Secreting Cells/metabolism , Polymorphism, Single Nucleotide , Carbonyl Reductase (NADPH)/genetics , Carbonyl Reductase (NADPH)/metabolism
5.
bioRxiv ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37214922

ABSTRACT

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional role of many loci has remained unexplored. In this study, we engineered isogenic knockout human embryonic stem cell (hESC) lines for 20 genes associated with T2D risk. We systematically examined ß-cell differentiation, insulin production and secretion, and survival. We performed RNA-seq and ATAC-seq on hESC-ß cells from each knockout line. Analyses of T2D GWAS signals overlapping with HNF4A-dependent ATAC peaks identified a specific SNP as a likely causal variant. In addition, we performed integrative association analyses and identified four genes ( CP, RNASE1, PCSK1N and GSTA2 ) associated with insulin production, and two genes ( TAGLN3 and DHRS2 ) associated with sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental hESC line, to identify a single likely functional variant at each of 23 T2D GWAS signals.

6.
IEEE Open J Eng Med Biol ; 3: 218-226, 2022.
Article in English | MEDLINE | ID: mdl-36860498

ABSTRACT

Histopathologic evaluation of Hematoxylin & Eosin (H&E) stained slides is essential for disease diagnosis, revealing tissue morphology, structure, and cellular composition. Variations in staining protocols and equipment result in images with color nonconformity. Although pathologists compensate for color variations, these disparities introduce inaccuracies in computational whole slide image (WSI) analysis, accentuating data domain shift and degrading generalization. Current state-of-the-art normalization methods employ a single WSI as reference, but selecting a single WSI representative of a complete WSI-cohort is infeasible, inadvertently introducing normalization bias. We seek the optimal number of slides to construct a more representative reference based on composite/aggregate of multiple H&E density histograms and stain-vectors, obtained from a randomly selected WSI population (WSI-Cohort-Subset). We utilized 1,864 IvyGAP WSIs as a WSI-cohort, and built 200 WSI-Cohort-Subsets varying in size (from 1 to 200 WSI-pairs) using randomly selected WSIs. The WSI-pairs' mean Wasserstein Distances and WSI-Cohort-Subsets' standard deviations were calculated. The Pareto Principle defined the optimal WSI-Cohort-Subset size. The WSI-cohort underwent structure-preserving color normalization using the optimal WSI-Cohort-Subset histogram and stain-vector aggregates. Numerous normalization permutations support WSI-Cohort-Subset aggregates as representative of a WSI-cohort through WSI-cohort CIELAB color space swift convergence, as a result of the law of large numbers and shown as a power law distribution. We show normalization at the optimal (Pareto Principle) WSI-Cohort-Subset size and corresponding CIELAB convergence: a) Quantitatively, using 500 WSI-cohorts; b) Quantitatively, using 8,100 WSI-regions; c) Qualitatively, using 30 cellular tumor normalization permutations. Aggregate-based stain normalization may contribute in increasing computational pathology robustness, reproducibility, and integrity.

7.
Brainlesion ; 11992: 44-56, 2020.
Article in English | MEDLINE | ID: mdl-32743562

ABSTRACT

Glioblastoma ( 'GBM' ) is the most aggressive type of primary malignant adult brain tumor, with very heterogeneous radio-graphic, histologic, and molecular profiles. A growing body of advanced computational analyses are conducted towards further understanding the biology and variation in glioblastoma. To address the intrinsic heterogeneity among different computational studies, reference standards have been established to facilitate both radiographic and molecular analyses, e.g., anatomical atlas for image registration and housekeeping genes, respectively. However, there is an apparent lack of reference standards in the domain of digital pathology, where each independent study uses an arbitrarily chosen slide from their evaluation dataset for normalization purposes. In this study, we introduce a novel stain normalization approach based on a composite reference slide comprised of information from a large population of anatomically annotated hematoxylin and eosin ( 'H&E' ) whole-slide images from the Ivy Glioblastoma Atlas Project ( 'IvyGAP' ). Two board-certified neuropathologists manually reviewed and selected annotations in 509 slides, according to the World Health Organization definitions. We computed summary statistics from each of these approved annotations and weighted them based on their percent contribution to overall slide ( 'PCOS' ), to form a global histogram and stain vectors. Quantitative evaluation of pre- and post-normalization stain density statistics for each annotated region with PCOS > 0.05% yielded a significant (largest p = 0.001, two-sided Wilcoxon rank sum test) reduction of its intensity variation for both 'H' & 'E' . Subject to further large-scale evaluation, our findings support the proposed approach as a potentially robust population-based reference for stain normalization.

SELECTION OF CITATIONS
SEARCH DETAIL