Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 25(5): 2418-2440, 2024 May.
Article in English | MEDLINE | ID: mdl-38605277

ABSTRACT

Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.


Subject(s)
Cell Cycle Proteins , Cyclin-Dependent Kinase Inhibitor p21 , Erythropoiesis , Mice, Knockout , Microcephaly , Tumor Suppressor Protein p53 , Animals , Mice , Anemia, Macrocytic/genetics , Anemia, Macrocytic/pathology , Anemia, Macrocytic/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Erythroid Precursor Cells/metabolism , Erythropoiesis/genetics , Microcephaly/genetics , Microcephaly/pathology , Mutation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
Mol Ther ; 32(7): 2150-2175, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38796706

ABSTRACT

Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.


Subject(s)
Cerebellar Ataxia , Cerebellum , Globins , Mitochondria , Nerve Tissue Proteins , Neuroglobin , Animals , Neuroglobin/metabolism , Mitochondria/metabolism , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Globins/metabolism , Globins/genetics , Cerebellum/metabolism , Cerebellar Ataxia/metabolism , Cerebellar Ataxia/genetics , Cerebellar Ataxia/therapy , Neurons/metabolism , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Homeostasis , Apoptosis Inducing Factor/metabolism , Apoptosis Inducing Factor/genetics , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy/methods , Gene Expression
3.
Glia ; 72(3): 475-503, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37909340

ABSTRACT

Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.


Subject(s)
Brain Injuries , Premature Birth , Infant , Pregnancy , Animals , Female , Infant, Newborn , Humans , Infant, Premature , Neuroglia , Brain
4.
Brain Behav Immun ; 120: 99-116, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705494

ABSTRACT

INTRODUCTION: Despite improved management of traumatic brain injury (TBI), it still leads to lifelong sequelae and disability, particularly in children. Chronic neuroinflammation (the so-called tertiary phase), in particular, microglia/macrophage and astrocyte reactivity, is among the main mechanisms suspected of playing a role in the generation of lesions associated with TBI. The role of acute neuroinflammation is now well understood, but its persistent effect and impact on the brain, particularly during development, are not. Here, we investigated the long-term effects of pediatric TBI on the brain in a mouse model. METHODS: Pediatric TBI was induced in mice on postnatal day (P) 7 by weight-drop trauma. The time course of neuroinflammation and myelination was examined in the TBI mice. They were also assessed by magnetic resonance, functional ultrasound, and behavioral tests at P45. RESULTS: TBI induced robust neuroinflammation, characterized by acute microglia/macrophage and astrocyte reactivity. The long-term consequences of pediatric TBI studied on P45 involved localized scarring astrogliosis, persistent microgliosis associated with a specific transcriptomic signature, and a long-lasting myelination defect consisting of the loss of myelinated axons, a decreased level of myelin binding protein, and severe thinning of the corpus callosum. These results were confirmed by reduced fractional anisotropy, measured by diffusion tensor imaging, and altered inter- and intra-hemispheric connectivity, measured by functional ultrasound imaging. In addition, adolescent mice with pediatric TBI showed persistent social interaction deficits and signs of anxiety and depressive behaviors. CONCLUSIONS: We show that pediatric TBI induces tertiary neuroinflammatory processes associated with white matter lesions and altered behavior. These results support our model as a model for preclinical studies for tertiary lesions following TBI.

5.
Pediatr Res ; 95(1): 112-119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37573381

ABSTRACT

BACKGROUND: Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. To investigate the neurogenic response to hypoxia-ischemia (HI) followed by normothermia (38.5 °C) or three different hypothermic temperatures (35, 33.5, or 30 °C) in the subventricular zone (SVZ) of the neonatal piglet. METHODS: Following transient cerebral HI and resuscitation, 28 newborn piglets were randomized to: normothermia or whole-body cooling to 35 °C, 33.5 °C, or 30 °C during 2-26 h (all n = 7). At 48 h, piglets were euthanized and SVZ obtained to evaluate its cellularity, pattern of cell death, radial glia length, doublecortin (DCX, neuroblasts) expression, and Ki67 (cell proliferation) and Ki67/Sox2 (neural stem/progenitor dividing) cell counts. RESULTS: Normothermic piglets showed lower total (Ki67+) and neural stem/progenitor dividing (Ki67+Sox2+) cell counts when compared to hypothermic groups. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and DCX immunohistochemistry. Cooling to 30 °C, however, revealed decreased cellularity in the lateral SVZ and shorter radial glia processes when compared with 33.5 °C. CONCLUSIONS: In a neonatal piglet model, hypothermia to 33.5 °C modulates the neurogenic response of the SVZ after HI, highlighting the potential beneficial effect of hypothermia to 33.5 °C on endogenous neurogenesis and the detrimental effect of overcooling beyond this threshold. IMPACT: Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. Hypothermia may modulate neurogenesis in the subventricular zone (SVZ) of the neonatal hypoxic-ischemic piglet. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and doublecortin immunohistochemistry; cooling to 30 °C, however, revealed decreased cellularity and shorter radial glia processes. In a neonatal piglet model, therapeutic hypothermia (33.5 °C) modulates the neurogenic response of the SVZ after hypoxia-ischemia, highlighting also the detrimental effect of overcooling beyond this threshold.


Subject(s)
Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Animals , Swine , Lateral Ventricles , Animals, Newborn , Hypothermia/therapy , Ki-67 Antigen , Neurogenesis , Hypoxia-Ischemia, Brain/therapy , Ischemia , Doublecortin Domain Proteins
6.
Pediatr Res ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902453

ABSTRACT

BACKGROUND: 'Neonatal encephalopathy' (NE) describes a group of conditions in term infants presenting in the earliest days after birth with disturbed neurological function of cerebral origin. NE is aetiologically heterogenous; one cause is peripartum hypoxic ischaemia. Lack of uniformity in the terminology used to describe NE and its diagnostic criteria creates difficulty in the design and interpretation of research and complicates communication with families. The DEFINE study aims to use a modified Delphi approach to form a consensus definition for NE, and diagnostic criteria. METHODS: Directed by an international steering group, we will conduct a systematic review of the literature to assess the terminology used in trials of NE, and with their guidance perform an online Real-time Delphi survey to develop a consensus diagnosis and criteria for NE. A consensus meeting will be held to agree on the final terminology and criteria, and the outcome disseminated widely. DISCUSSION: A clear and consistent consensus-based definition of NE and criteria for its diagnosis, achieved by use of a modified Delphi technique, will enable more comparability of research results and improved communication among professionals and with families. IMPACT: The terms Neonatal Encephalopathy and Hypoxic Ischaemic Encephalopathy tend to be used interchangeably in the literature to describe a term newborn with signs of encephalopathy at birth. This creates difficulty in communication with families and carers, and between medical professionals and researchers, as well as creating difficulty with performance of research. The DEFINE project will use a Real-time Delphi approach to create a consensus definition for the term 'Neonatal Encephalopathy'. A definition formed by this consensus approach will be accepted and utilised by the neonatal community to improve research, outcomes, and parental experience.

7.
Neurobiol Dis ; 187: 106315, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37783234

ABSTRACT

G protein-coupled receptor 17 (GPR17) and the WNT pathway are critical players of oligodendrocyte (OL) differentiation acting as essential timers in developing brain to achieve fully-myelinating cells. However, whether and how these two systems are related to each other is still unknown. Of interest, both factors are dysregulated in developing and adult brain diseases, including white matter injury and cancer, making the understanding of their reciprocal interactions of potential importance for identifying new targets and strategies for myelin repair. Here, by a combined pharmacological and biotechnological approach, we examined regulatory mechanisms linking WNT signaling to GPR17 expression in OLs. We first analyzed the relative expression of mRNAs encoding for GPR17 and the T cell factor/Lymphoid enhancer-binding factor-1 (TCF/LEF) transcription factors of the canonical WNT/ß-CATENIN pathway, in PDGFRα+ and O4+ OLs during mouse post-natal development. In O4+ cells, Gpr17 mRNA level peaked at post-natal day 14 and then decreased concomitantly to the physiological uprise of WNT tone, as shown by increased Lef1 mRNA level. The link between WNT signaling and GPR17 expression was further reinforced in vitro in primary PDGFRα+ cells and in Oli-neu cells. High WNT tone impaired OL differentiation and drastically reduced GPR17 mRNA and protein levels. In Oli-neu cells, WNT/ß-CATENIN activation repressed Gpr17 promoter activity through both putative WNT response elements (WRE) and upregulation of the inhibitor of DNA-binding protein 2 (Id2). We conclude that the WNT pathway influences OL maturation by repressing GPR17, which could have implications in pathologies characterized by dysregulations of the OL lineage including multiple sclerosis and oligodendroglioma.


Subject(s)
Oligodendrocyte Precursor Cells , Wnt Signaling Pathway , Mice , Animals , beta Catenin/metabolism , Oligodendrocyte Precursor Cells/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Nerve Tissue Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Cell Differentiation/physiology , Oligodendroglia/metabolism , RNA, Messenger/metabolism
8.
Dev Neurosci ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37717575

ABSTRACT

Understanding the long-term functional implications of gut microbial communities during the perinatal period is a bourgeoning area of research. Numerous studies have revealed the existence of a "gut-brain axis" and the impact of an alteration of gut microbiota composition in brain diseases. Recent research has highlighted how gut microbiota could affect brain development and behavior. Many factors in early life such as the mode of delivery or preterm birth could lead to disturbance in the assembly and maturation of gut microbiota. Notably, global rates of cesarean sections (C-sections) have increased in recent decades and remain important when considering premature delivery. Both preterm birth and C-sections are associated with an increased risk of neurodevelopmental disorders such as autism spectrum disorders; with neuroinflammation a major risk factor. In this review, we explore links between preterm birth by C-sections, gut microbiota alteration, and neuroinflammation. We also highlight C-sections as a risk factor for developmental disorders due to alterations in the microbiome.

9.
Ann Neurol ; 91(1): 48-65, 2022 01.
Article in English | MEDLINE | ID: mdl-34741343

ABSTRACT

OBJECTIVES: In the premature newborn, perinatal inflammation mediated by microglia contributes significantly to neurodevelopmental injuries including white matter injury (WMI). Brain inflammation alters development through neuroinflammatory processes mediated by activation of homeostatic microglia toward a pro-inflammatory and neurotoxic phenotype. Investigating immune regulators of microglial activation is crucial to find effective strategies to prevent and treat WMI. METHODS: Ex vivo microglial cultures and a mouse model of WMI induced by perinatal inflammation (interleukin-1-beta [IL-1ß] and postnatal days 1-5) were used to uncover and elucidate the role of microRNA-146b-5p in microglial activation and WMI. RESULTS: A specific reduction in vivo in microglia of Dicer, a protein required for microRNAs maturation, reduces pro-inflammatory activation of microglia and prevents hypomyelination in our model of WMI. Microglial miRNome analysis in the WMI model identified miRNA-146b-5p as a candidate modulator of microglial activation. Ex vivo microglial cell culture treated with the pro-inflammatory stimulus lipopolysaccharide (LPS) led to overexpression of immunomodulatory miRNA-146b-5p but its drastic reduction in the microglial extracellular vesicles (EVs). To increase miRNA-146b-5p expression, we used a 3DNA nanocarrier to deliver synthetic miRNA-146b-5p specifically to microglia. Enhancing microglial miRNA-146b-5p overexpression significantly decreased LPS-induced activation, downregulated IRAK1, and restored miRNA-146b-5p levels in EVs. In our WMI model, 3DNA miRNA-146b-5p treatment significantly prevented microglial activation, hypomyelination, and cognitive defect induced by perinatal inflammation. INTERPRETATIONS: These findings support that miRNA-146b-5p is a major regulator of microglia phenotype and could be targeted to reduce the incidence and the severity of perinatal brain injuries and their long-term consequences. ANN NEUROL 2022;91:48-65.


Subject(s)
Brain/pathology , MicroRNAs/metabolism , Microglia/pathology , White Matter/pathology , Animals , Mice , Neurogenesis/physiology
10.
J Neural Transm (Vienna) ; 130(3): 281-297, 2023 03.
Article in English | MEDLINE | ID: mdl-36335540

ABSTRACT

Approximately 15 million babies are born prematurely every year and many will face lifetime motor and/or cognitive deficits. Children born prematurely are at higher risk of developing perinatal brain lesions, especially white matter injuries (WMI). Evidence in humans and rodents demonstrates that systemic inflammation-induced neuroinflammation, including microglial and astrocyte reactivity, is the prominent processes of WMI associated with preterm birth. Thus, a new challenge in the field of perinatal brain injuries is to develop new neuroprotective strategies to target neuroinflammation to prevent WMI. Serotonin (5-HT) and its receptors play an important role in inflammation, and emerging evidence indicates that 5-HT may regulate brain inflammation by the modulation of microglial reactivity and astrocyte functions. The present study is based on a mouse model of WMI induced by intraperitoneal (i.p.) injections of IL-1ß during the first 5 days of life. In this model, certain key lesions of preterm brain injuries can be summarized by (i) systemic inflammation, (ii) pro-inflammatory microglial and astrocyte activation, and (iii) inhibition of oligodendrocyte maturation, leading to hypomyelination. We demonstrate that Htr7 mRNA (coding for the HTR7/5-HT7 receptor) is significantly overexpressed in the anterior cortex of IL-1ß-exposed animals, suggesting it as a potential therapeutic target. LP-211 is a specific high-affinity HTR7 agonist that crosses the blood-brain barrier (BBB). When co-injected with IL-1ß, LP-211 treatment prevented glial reactivity, the down-regulation of myelin-associated proteins, and the apparition of anxiety-like phenotypes. Thus, HTR7 may represent an innovative therapeutic target to protect the developing brain from preterm brain injuries.


Subject(s)
Brain Injuries , Premature Birth , White Matter , Animals , Mice , Pregnancy , Female , Child , Infant, Newborn , Humans , White Matter/pathology , Rodentia , Neuroinflammatory Diseases , Serotonin/metabolism , Premature Birth/metabolism , Premature Birth/pathology , Brain/metabolism , Brain Injuries/etiology , Brain Injuries/prevention & control , Inflammation/pathology , Microglia/metabolism
11.
Anesth Analg ; 136(2): 240-250, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36638508

ABSTRACT

BACKGROUND: One in 7 children will need general anesthesia (GA) before the age of 3. Brain toxicity of anesthetics is controversial. Our objective was to clarify whether exposure of GA to the developing brain could lead to lasting behavioral and structural brain changes. METHODS: A first study was performed in mice. The behaviors (fear conditioning, Y-maze, and actimetry) and brain anatomy (high-resolution magnetic resonance imaging) of 6- to 8-week-old Swiss mice exposed or not exposed to GA from 4 to 10 days old were evaluated. A second study was a complementary analysis from the preexisting APprentissages EXécutifs et cerveau chez les enfants d'âge scolaire (APEX) cohort to assess the replicability of our data in humans. The behaviors (behavior rating inventory of executive function, emotional control, and working memory score, Backward Digit Span, and Raven 36) and brain anatomy (high-resolution magnetic resonance imaging) were compared in 102 children 9 to 10 years of age exposed or not exposed to a single GA (surgery) during infancy. RESULTS: The animal study revealed chronic exacerbated fear behavior in the adult mice (95% confidence interval [CI], 4-80; P = .03) exposed to postnatal GA; this was associated with an 11% (95% CI, 7.5-14.5) reduction of the periaqueductal gray matter (P = .046). The study in humans suggested lower emotional control (95% CI, 0.33-9.10; P = .06) and a 6.1% (95% CI, 4.3-7.8) reduction in the posterior part of the right inferior frontal gyrus (P = .019) in the children who had been exposed to a single GA procedure. CONCLUSIONS: The preclinical and clinical findings of these independent studies suggest lasting effects of early life exposure to anesthetics on later emotional control behaviors and brain structures.


Subject(s)
Anesthetics , Brain , Humans , Child , Adult , Animals , Mice , Brain/diagnostic imaging , Anesthesia, General/adverse effects , Magnetic Resonance Imaging/methods , Memory, Short-Term
12.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894820

ABSTRACT

Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal-fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system's implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology.


Subject(s)
Autism Spectrum Disorder , Premature Birth , Female , Humans , Infant, Newborn , Pregnancy , Autism Spectrum Disorder/metabolism , Epitopes/metabolism , gamma-Aminobutyric Acid/metabolism , Glutamates/metabolism , Placenta/metabolism , Polysaccharides/metabolism , Premature Birth/metabolism
13.
Glia ; 70(9): 1699-1719, 2022 09.
Article in English | MEDLINE | ID: mdl-35579329

ABSTRACT

Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1ß, we sought to uncover causes of cerebellar damage. In this model, IL-1ß is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1ß treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1ß leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.


Subject(s)
Cerebellar Diseases , Infant, Premature, Diseases , Inflammation , Interferon Type I , Interleukin-1beta , Microglia , Animals , Brain Diseases/chemically induced , Brain Diseases/immunology , Brain Diseases/pathology , Cerebellar Diseases/chemically induced , Cerebellar Diseases/immunology , Cerebellar Diseases/pathology , Cerebellum/drug effects , Cerebellum/immunology , Cerebellum/pathology , Disease Models, Animal , Female , Humans , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/chemically induced , Infant, Premature, Diseases/immunology , Infant, Premature, Diseases/pathology , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Interferon Type I/immunology , Interleukin-1beta/adverse effects , Interleukin-1beta/pharmacology , Microglia/drug effects , Microglia/immunology , Microglia/pathology , Pregnancy
14.
Glia ; 70(1): 50-70, 2022 01.
Article in English | MEDLINE | ID: mdl-34519378

ABSTRACT

Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.


Subject(s)
Fatty Acids, Omega-3 , Animals , Brain , Mice , Myelin Sheath , Neurogenesis , Oligodendroglia
15.
Neurobiol Dis ; 174: 105892, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36240949

ABSTRACT

Preventing brain cell loss and enhancing tissue repair are crucial objectives to improve the outcome of stroke. Fetal microchimerism has been implicated in brain repair following ischemic stroke in mice. CCL2/CCR2 signaling pathway triggers fetal progenitors trafficking to cutaneous wounds. Therefore, we sought to evaluate whether CCL2 could dampen brain damage in a model of excitotoxic lesion in post-partum mice. Virgin or post-partum mice were subjected to an intracerebral injection of ibotenate to induce excitotoxic lesions. Low doses of CCL2 or its vehicle were concomitantly injected. Morphological and molecular analyses were performed 1 and 5 days following the procedure. Intracerebral treatment with low doses of CCL2 was able to limit brain excitotoxic damage induced by ibotenate in post-partum mice, through an enhanced recruitment of fetal microchimeric cells to the damaged hemisphere. At day 1 post-injection, we observed a decreased cortical apoptosis associated with a reduced reactive astrocytosis. At day 5, we found an increased proportion of mature neurons and oligodendrocytes correlating with an increase in GAP43 growth cones. At this stage, immune microglial cells were reduced, while angiogenesis was enhanced. Importantly, CCL2 did not have beneficial effects in virgin mice therefore ruling out a specific role of CCL2 independently from fetal microchimeric cells mobilization. CCL2 treatment efficiently enhances fetal cell mobilization to improve the outcome of a brain excitotoxic challenge in post-partum mice. This study paves the way for a "natural stem cell therapy" based on the selective recruitment of fetal progenitors to repair maternal brain injury.


Subject(s)
Brain Injuries , Humans , Female , Animals , Mice , Brain Injuries/metabolism , Brain/metabolism , Microglia/metabolism , Neurons/metabolism , Postpartum Period , Chemokine CCL2/metabolism , Chemokine CCL2/pharmacology
16.
Br J Haematol ; 199(5): 739-743, 2022 12.
Article in English | MEDLINE | ID: mdl-36111525

ABSTRACT

In a patient with severe microcephaly, congenital bone marrow failure, growth retardation, and renal hypoplasia, we identified a likely pathogenic variant in NUF2 that impairs the cell's ability to properly complete mitosis. Interestingly, these clinical features as well as the observed cellular alterations are highly reminiscent of what is reported in Fanconi Anaemia supporting a unifying causal role of the variant in the disease. This case provides the first evidence that a kinetochore defect, previously associated with microcephaly, can be responsible for an inherited bone marrow failure syndrome, highlighting the unique pathological link between neurogenesis and haematopoiesis.


Subject(s)
Fanconi Anemia , Microcephaly , Humans , Cell Cycle Proteins , Congenital Bone Marrow Failure Syndromes , Microcephaly/genetics
17.
J Neuroinflammation ; 19(1): 265, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36309753

ABSTRACT

Encephalopathy of prematurity (EoP) affects approximately 30% of infants born < 32 weeks gestation and is highly associated with inflammation in the foetus. Here we evaluated the efficacy of montelukast, a cysteinyl leukotriene receptor antagonist widely used to treat asthma in children, to ameliorate peripheral and central inflammation, and subsequent grey matter neuropathology and behaviour deficits in a mouse model of EoP. Male CD-1 mice were treated with intraperitoneal (i.p.) saline or interleukin-1beta (IL-1ß, 40 µg/kg, 5 µL/g body weight) from postnatal day (P)1-5 ± concomitant montelukast (1-30 mg/kg). Saline or montelukast treatment was continued for a further 5 days post-injury. Assessment of systemic and central inflammation and short-term neuropathology was performed from 4 h following treatment through to P10. Behavioural testing, MRI and neuropathological assessments were made on a second cohort of animals from P36 to 54. Montelukast was found to attenuate both peripheral and central inflammation, reducing the expression of pro-inflammatory molecules (IL-1ß, IL-6, TNF) in the brain. Inflammation induced a reduction in parvalbumin-positive interneuron density in the cortex, which was normalised with high-dose montelukast. The lowest effective dose, 3 mg/kg, was able to improve anxiety and spatial learning deficits in this model of inflammatory injury, and alterations in cortical mean diffusivity were not present in animals that received this dose of montelukast. Repurposed montelukast administered early after preterm birth may, therefore, improve grey matter development and outcome in EoP.


Subject(s)
Brain Diseases , Premature Birth , Quinolines , Infant, Newborn , Humans , Female , Male , Animals , Mice , Gray Matter , Premature Birth/drug therapy , Acetates/therapeutic use , Acetates/pharmacology , Quinolines/therapeutic use , Quinolines/pharmacology , Disease Models, Animal , Inflammation/drug therapy
18.
Pediatr Res ; 91(6): 1416-1427, 2022 05.
Article in English | MEDLINE | ID: mdl-34050269

ABSTRACT

BACKGROUND: Perinatal inflammation combined with hypoxia-ischemia (HI) exacerbates injury in the developing brain. Therapeutic hypothermia (HT) is standard care for neonatal encephalopathy; however, its benefit in inflammation-sensitized HI (IS-HI) is unknown. METHODS: Twelve newborn piglets received a 2 µg/kg bolus and 1 µg/kg/h infusion over 52 h of Escherichia coli lipopolysaccharide (LPS). HI was induced 4 h after LPS bolus. After HI, piglets were randomized to HT (33.5 °C 1-25 h after HI, n = 6) or normothermia (NT, n = 6). Amplitude-integrated electroencephalogram (aEEG) was recorded and magnetic resonance spectroscopy (MRS) was acquired at 24 and 48 h. At 48 h, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive brain cell death, microglial activation/proliferation, astrogliosis, and cleaved caspase-3 (CC3) were quantified. Hematology and plasma cytokines were serially measured. RESULTS: Two HT piglets died. aEEG recovery, thalamic and white matter MRS lactate/N-acetylaspartate, and TUNEL-positive cell death were similar between groups. HT increased microglial activation in the caudate, but had no other effect on glial activation/proliferation. HT reduced CC3 overall. HT suppressed platelet count and attenuated leukocytosis. Cytokine profile was unchanged by HT. CONCLUSIONS: We did not observe protection with HT in this piglet IS-HI model based on aEEG, MRS, and immunohistochemistry. Immunosuppressive effects of HT and countering neuroinflammation by LPS may contribute to the observed lack of HT efficacy. Other immunomodulatory strategies may be more effective in IS-HI. IMPACT: Acute infection/inflammation is known to exacerbate perinatal brain injury and can worsen the outcomes in neonatal encephalopathy. Therapeutic HT is the current standard of care for all infants with NE, but the benefit in infants with coinfection/inflammation is unknown. In a piglet model of inflammation (LPS)-sensitized HI, we observed no evidence of neuroprotection with cooling for 24 h, based on our primary outcome measures: aEEG, MRS Lac/NAA, and histological brain cell death. Additional neuroprotective agents, with beneficial immunomodulatory effects, require exploration in IS-HI models.


Subject(s)
Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Animals , Animals, Newborn , Brain/pathology , Disease Models, Animal , Humans , Hypothermia/pathology , Hypothermia, Induced/methods , Hypoxia , Inflammation/pathology , Ischemia/pathology , Lipopolysaccharides , Swine
19.
Eur J Pediatr ; 181(5): 1859-1869, 2022 May.
Article in English | MEDLINE | ID: mdl-35028730

ABSTRACT

Congenital cytomegalovirus (CMV) infection leads to olfactory bulb lesions in the fetus, yet little is known about its impact on olfaction after birth. Here, we have assessed in a prospective study conducted on children in two French hospitals from 2016 to 2019, infection severity and olfactory performance after congenital CMV infection. Children with congenital CMV infection aged 3 to 10 years and healthy controls (CTL) matched for age and sex to CMV children symptomatic at birth (sCMV) were enrolled. Olfactory discrimination was assessed using mono-odorants and binary mixtures. Data were analyzed for 54 children with PCR-confirmed congenital CMV infection, including 34 sCMV (median [IQR] age, 6 [5-8] years; 19 [55.9%] male), and 20 CMV asymptomatic at birth (aCMV, median [IQR] age, 4 [3-6] years; 12 [60.0%] male). sCMV were compared to 34 CTL children. Olfactory scores in CMV-infected children were independent from vestibular deficit and hearing loss. The olfactory score was efficient to discriminate between CTL and sCMV for children > 6 years (area under the receiver-operating characteristic curve (AUC, 0.85; P = 0.0006), but not for children < 7 years. For children > 6 years, the proportion of children with total olfactory score < 4 differed between sCMV and CTL groups (91.2% and 18.7%, P < 0.001), but not between aCMV and age-matched healthy control groups.   Conclusion: Congenital CMV infection is associated with reduced olfactory performance in children with infection symptoms at birth.   Clinical trial registration: NCT02782988 (registration date: May 26, 2016). What is Known: •Congenital cytomegalovirus infection leads to olfactory bulb lesions in the fetus, yet little is known about its impact on olfaction after birth. •Depending on neonatal clinical presentation, children are either categorized as having a symptomatic or asymptomatic infection at birth. What is New: •Congenital cytomegalovirus infection is associated with reduced olfactory performance in children with infection symptoms at birth.


Subject(s)
Cytomegalovirus Infections , Child , Child, Preschool , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/congenital , Female , Humans , Infant, Newborn , Male , Prospective Studies
20.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232495

ABSTRACT

Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.


Subject(s)
Brain Injuries, Traumatic , Inflammation , Animals , Brain/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Child , Cytokines/pharmacology , Disease Models, Animal , Humans , Inflammation/complications , Microglia , Oxygen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL