Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Int J Mol Sci ; 20(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671598

ABSTRACT

Alzheimer's disease (AD) affects not only the central nervous system, but also peripheral blood cells including neutrophils and platelets, which actively participate in pathogenesis of AD through a vicious cycle between platelets aggregation and production of excessive amyloid beta (Aß). Platelets adhesion on amyloid plaques also increases the risk of cerebral microcirculation disorders. Moreover, activated platelets release soluble adhesion molecules that cause migration, adhesion/activation of neutrophils and formation of neutrophil extracellular traps (NETs), which may damage blood brain barrier and destroy brain parenchyma. The present study examined the effects of intermittent hypoxic-hyperoxic training (IHHT) on elderly patients with mild cognitive impairment (MCI), a precursor of AD. Twenty-one participants (age 51-74 years) were divided into three groups: Healthy Control (n = 7), MCI+Sham (n = 6), and MCI+IHHT (n = 8). IHHT was carried out five times per week for three weeks (total 15 sessions). Each IHHT session consisted of four cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Cognitive parameters, Aß and amyloid precursor protein (APP) expression, microRNA 29, and long non-coding RNA in isolated platelets as well as NETs in peripheral blood were investigated. We found an initial decline in cognitive function indices in both MCI+Sham and MCI+IHHT groups and significant correlations between cognitive test scores and the levels of circulating biomarkers of AD. Whereas sham training led to no change in these parameters, IHHT resulted in the improvement in cognitive test scores, along with significant increase in APP ratio and decrease in Aß expression and NETs formation one day after the end of three-week IHHT. Such effects on Aß expression and NETs formation remained more pronounced one month after IHHT. In conclusion, our results from this pilot study suggested a potential utility of IHHT as a new non-pharmacological therapy to improve cognitive function in pre-AD patients and slow down the development of AD.


Subject(s)
Alzheimer Disease/complications , Biomarkers/blood , Cognitive Dysfunction/therapy , Respiratory Therapy/methods , Aged , Alzheimer Disease/blood , Alzheimer Disease/psychology , Case-Control Studies , Cognition , Cognitive Dysfunction/blood , Cognitive Dysfunction/psychology , Female , Humans , Hyperoxia , Hypoxia , Male , Middle Aged , Pilot Projects , Treatment Outcome
3.
Life (Basel) ; 12(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35330183

ABSTRACT

Intermittent hypoxia-hyperoxia training (IHHT) is a non-pharmacological therapeutic modality for management of some chronic- and age-related pathologies, such as Alzheimer's disease (AD). Our previous studies demonstrated significant improvement of cognitive function after IHHT in the patients with mild cognitive impairment (MCI). The present study further investigated the effects of IHHT on pro-inflammatory factors in healthy elderly individuals and patients with early signs of AD. Twenty-nine subjects (13 healthy subjects without signs of cognitive impairment syndrome and 16 patients diagnosed with MCI; age 52 to 76 years) were divided into four groups: Healthy+Sham (n = 7), Healthy+IHHT (n = 6), MCI+Sham (n = 6), and MCI+IHHT (n = 10). IHHT was carried out 5 days per week for 3 weeks (total 15 sessions), and each daily session included 4 cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Decline in cognitive function indices was observed initially in both MCI+Sham and MCI+IHHT groups. The sham training did not alter any of the parameters, whereas IHHT resulted in improvement in latency of cognitive evoked potentials, along with elevation in APP110, GDF15 expression, and MMP9 activity in both healthy subjects and those with MCI. Increased MMP2 activity, HMGB1, and P-selectin expression and decreased NETs formation and Aß expression were also observed in the MCI+IHHT group. There was a negative correlation between MoCA score and the plasma GDF15 expression (R = −0.5799, p < 0.05) before the initiation of IHHT. The enhanced expression of GDF15 was also associated with longer latency of the event-related potentials P330 and N200 (R = 0.6263, p < 0.05 and R = 0.5715, p < 0.05, respectively). In conclusion, IHHT upregulated circulating levels of some inflammatory markers, which may represent potential triggers for cellular adaptive reprogramming, leading to therapeutic effects against cognitive dysfunction and neuropathological changes during progression of AD. Further investigation is needed to clarify if there is a causative relationship between the improved cognitive function and the elevated inflammatory markers following IHHT.

4.
High Alt Med Biol ; 20(4): 383-391, 2019 12.
Article in English | MEDLINE | ID: mdl-31589074

ABSTRACT

Background: Intermittent hypoxia/normoxia training (IHT) is considered a possible means to alleviate chronic diseases such as diabetes. In the last decade, another method of intermittent hypoxia/hyperoxia training (IHHT) began to enter the clinical practice, when the periods of breathing with atmospheric air are replaced by breathing a hyperoxic mixture. The present study compared the impact of adaptation to IHHT versus IHT on some metabolic variables in prediabetic patients. Methods: A placebo-controlled trial included 55 patients with prediabetes, sea level residents, ages 51-74 years. Control Group (16 patients) took sham 3-week course, and the IHHT Group (17 patients) and IHT Group (22 patients) received similar actual sessions of IHHT or IHT five times a week for 3 weeks, each session consisting four cycles of 5 minutes of hypoxia (12% O2) followed by 3 minutes of hyperoxia (IHHT, 33% O2) or 5 minutes of normoxia (IHT, breathing room air). Fasting glucose, oral glucose tolerance test (OGTT), blood lipids, and the level of blood oxygen saturation (SpO2) were investigated at baseline, as well as 1 day and 1 month after IHHT/IHT termination. Results: The study showed the same positive effect of two types of training: equal reduction of serum glucose concentrations, both fasting and 2 hours of OGTT; decreased total blood cholesterol and low-density lipoproteins; and an equally smaller drop in SpO2 during acute hypoxic test (breathing with 12% O2 for 20 minutes). Improved parameters persisted 1 month after training termination in both groups. Conclusion: One of the advantages of IHHT over IHT observed in this study could be some reduction in the duration of the sessions due to shortening reoxygenation periods. Further studies are required to search for additional beneficial effects of IHHT when using other training modes or other pathologies.


Subject(s)
Adaptation, Physiological/physiology , Exercise Therapy/methods , Hyperoxia , Hypoxia , Oxygen Inhalation Therapy/methods , Prediabetic State/therapy , Aged , Blood Gas Analysis , Blood Glucose/metabolism , Exercise Tolerance/physiology , Fasting , Female , Glucose Tolerance Test , Humans , Male , Middle Aged , Oxygen Consumption , Prediabetic State/blood , Prediabetic State/physiopathology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL