ABSTRACT
Systemic infection triggers a spectrum of metabolic and behavioral changes, collectively termed sickness behavior, which while adaptive, can affect mood and cognition. In vulnerable individuals, acute illness can also produce profound, maladaptive, cognitive dysfunction including delirium, but our understanding of delirium pathophysiology remains limited. Here, we used bacterial lipopolysaccharide (LPS) in female C57BL/6J mice and acute hip fracture in humans to address whether disrupted energy metabolism contributes to inflammation-induced behavioral and cognitive changes. LPS (250 µg/kg) induced hypoglycemia, which was mimicked by interleukin (IL)-1ß (25 µg/kg) but not prevented in IL-1RI-/- mice, nor by IL-1 receptor antagonist (IL-1RA; 10 mg/kg). LPS suppression of locomotor activity correlated with blood glucose concentrations, was mitigated by exogenous glucose (2 g/kg), and was exacerbated by 2-deoxyglucose (2-DG) glycolytic inhibition, despite preventing IL-1ß synthesis. Using the ME7 model of chronic neurodegeneration in female mice, to examine vulnerability of the diseased brain to acute stressors, we showed that LPS (100 µg/kg) produced acute cognitive dysfunction, selectively in those animals. These acute cognitive impairments were mimicked by insulin (11.5 IU/kg) and mitigated by glucose, demonstrating that acutely reduced glucose metabolism impairs cognition selectively in the vulnerable brain. To test whether these acute changes might predict altered carbohydrate metabolism during delirium, we assessed glycolytic metabolite levels in CSF in humans during inflammatory trauma-induced delirium. Hip fracture patients showed elevated CSF lactate and pyruvate during delirium, consistent with acutely altered brain energy metabolism. Collectively, the data suggest that disruption of energy metabolism drives behavioral and cognitive consequences of acute systemic inflammation.SIGNIFICANCE STATEMENT Acute systemic inflammation alters behavior and produces disproportionate effects, such as delirium, in vulnerable individuals. Delirium has serious short and long-term sequelae but mechanisms remain unclear. Here, we show that both LPS and interleukin (IL)-1ß trigger hypoglycemia, reduce CSF glucose, and suppress spontaneous activity. Exogenous glucose mitigates these outcomes. Equivalent hypoglycemia, induced by lipopolysaccharide (LPS) or insulin, was sufficient to trigger cognitive impairment selectively in animals with existing neurodegeneration and glucose also mitigated those impairments. Patient CSF from inflammatory trauma-induced delirium also shows altered brain carbohydrate metabolism. The data suggest that the degenerating brain is exquisitely sensitive to acute behavioral and cognitive consequences of disrupted energy metabolism. Thus "bioenergetic stress" drives systemic inflammation-induced dysfunction. Elucidating this may offer routes to mitigating delirium.
Subject(s)
Cognitive Dysfunction/metabolism , Delirium/metabolism , Energy Metabolism , Glucose/metabolism , Inflammation/metabolism , Aged , Aged, 80 and over , Animals , Cognitive Dysfunction/etiology , Delirium/etiology , Female , Hip Fractures/cerebrospinal fluid , Hip Fractures/complications , Humans , Illness Behavior/physiology , Inflammation/cerebrospinal fluid , Inflammation/etiology , Interleukin-1beta/administration & dosage , Lipopolysaccharides/administration & dosage , Male , Mice, Inbred C57BL , Middle AgedABSTRACT
Locus coeruleus (LC)-derived noradrenaline is important in cognition and decreases with age, but the impact of prior noradrenaline deficiency on vulnerability to inflammation-induced acute cognitive dysfunction is unclear. Here we assessed whether noradrenergic depletion, in female mice, impacted upon inflammation, locomotor activity and working memory directly after acute systemic immune challenge with bacterial lipopolysaccharide (LPS), a paradigm we have previously used to capture delirium-like acute cognitive deficits. Mice received 2 doses of the LC-selective noradrenergic toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4; 50 mg/kg i.p.) and were challenged, 2 weeks later, with LPS (100 µg/kg i.p.). DSP-4 dramatically reduced noradrenaline concentrations and tyrosine hydroxylase-positive afferents in the frontal cortex and hippocampus. This did not significantly alter numbers of Pu.1-positive microglia, Iba1-positive microglial morphology or mRNA expression of microglia-associated gene transcripts (Tyrobp, Sall1, Cd68, Sra2, Clec7a) in the hippocampus or frontal cortex and produced modest reductions in Cx3cr1 and P2ry12. LPS induced blood and brain cytokine levels, cFOS activation and locomotor responses that were highly similar in DSP-4- and vehicle-treated mice, although LPS-induced plasma TNF-α was significantly reduced in those treated with DSP-4. Importantly, prior noradrenergic depletion did not predispose to LPS-induced T-maze working memory deficits. The data demonstrate that significant depletion of noradrenaline in the hippocampus and frontal cortex does not prompt acutely exaggerated neuroinflammation or leave the brain vulnerable to acute, transient working memory deficits upon low dose LPS challenge. These findings have implications for our understanding of the impact of systemic inflammation on the aging and vulnerable brain during septic encephalopathy and delirium.
Subject(s)
Lipopolysaccharides , Memory, Short-Term , Animals , Female , Illness Behavior , Mice , Microglia , NorepinephrineABSTRACT
Double stranded RNA is generated during viral replication. The synthetic analogue poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disorders including schizophrenia, autism, Parkinson's disease and Alzheimer's disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1-6 kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNF-α responses than poly I:C of < 500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFNß nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFNß binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1ß and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length-, IFNAR1- and age-dependent effects on anti-viral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.
Subject(s)
COVID-19 , Cognitive Dysfunction , Animals , Humans , Illness Behavior , Immunity, Innate , Mice , Poly I-C , RNA, Double-Stranded , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2ABSTRACT
Following publication of this article, the authors noticed an error in the abstract, where they incorrectly stated that: "Direct application of IL-1ß to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-/--dependent fashion". This has now been corrected to: "Direct application of IL-1ß to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-dependent fashion". The authors would like to apologise for this error. This has been corrected in both the PDF and HTML versions of the article.
ABSTRACT
Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consolidation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1ß replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1ß synthesis. Direct application of IL-1ß to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1ß but direct hippocampal action of IL-1ß causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.
Subject(s)
Brain Injuries/immunology , Cognitive Dysfunction/immunology , Interleukin-1/metabolism , Animals , Brain/metabolism , Cognition/physiology , Cognition Disorders/immunology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cytokines/metabolism , Dementia/immunology , Female , Hippocampus/metabolism , Inflammation/complications , Inflammation/metabolism , Interleukin-1/immunology , Lipopolysaccharides/pharmacology , Memory Disorders/immunology , Memory, Short-Term/physiology , Mice , Mice, Inbred C57BL , Neurons/metabolismABSTRACT
Type I interferons (IFN-I) are the principal antiviral molecules of the innate immune system and can be made by most cell types, including central nervous system cells. IFN-I has been implicated in neuroinflammation during neurodegeneration, but its mechanism of induction and its consequences remain unclear. In the current study, we assessed expression of IFN-I in murine prion disease (ME7) and examined the contribution of the IFN-I receptor IFNAR1 to disease progression. The data indicate a robust IFNß response, specifically in microglia, with evidence of IFN-dependent genes in both microglia and astrocytes. This IFN-I response was absent in stimulator of interferon genes (STING-/- ) mice. Microglia showed increased numbers and activated morphology independent of genotype, but transcriptional signatures indicated an IFNAR1-dependent neuroinflammatory phenotype. Isolation of microglia and astrocytes demonstrated disease-associated microglial induction of Tnfα, Tgfb1, and of phagolysosomal system transcripts including those for cathepsins, Cd68, C1qa, C3, and Trem2, which were diminished in IFNAR1 and STING deficient mice. Microglial increases in activated cathepsin D, and CD68 were significantly reduced in IFNAR1-/- mice, particularly in white matter, and increases in COX-1 expression, and prostaglandin synthesis were significantly mitigated. Disease progressed more slowly in IFNAR1-/- mice, with diminished synaptic and neuronal loss and delayed onset of neurological signs and death but without effect on proteinase K-resistant PrP levels. Therefore, STING-dependent IFN-I influences microglial phenotype and influences neurodegenerative progression despite occurring secondary to initial degenerative changes. These data expand our mechanistic understanding of IFN-I induction and its impact on microglial function during chronic neurodegeneration.
Subject(s)
Disease Progression , Interferon Type I/biosynthesis , Membrane Proteins/deficiency , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Receptor, Interferon alpha-beta/deficiency , Animals , Chronic Disease , Female , Interferon Type I/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Microglia/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Phenotype , Receptor, Interferon alpha-beta/geneticsABSTRACT
OBJECTIVES: Clenbuterol is a brain penetrant ß2-adrenoceptor agonist with anti-inflammatory and putative neuroprotective properties. In the present investigation, the effect of clenbuterol was assessed in a rat model of acute brain injury induced by intra-striatal administration of the pro-inflammatory cytokine IL-1ß. METHODS: Clenbuterol (0.5 mg/kg; i.p.) was administered one hour prior to stereotactically delivered IL-1ß (100 ng) into the striatum. Four hours postinjection, rats were anesthetized, blood samples were collected for circulating cytokine and chemokine analysis, and the ipsilateral striatum and liver tissue were harvested for mRNA expression analysis of target genes. RESULTS: Intrastriatal IL-1ß provoked an inflammatory response with increased expression of IL-1ß and the pro-inflammatory cytokine TNF-α. TNF-α expression was also increased in the liver and circulating concentrations of the chemokine cytokine-induced neutrophil chemoattractant 1 (CINC-1) were raised in response to intrastriatal IL-1ß administration. The striatal response was accompanied by NFκB activation and 24 hours postinjection, increased immunoreactivity of the neutrophil marker MBS-2, indicative of cell infiltration and increased TUNEL staining, a cell marker of apoptosis. Treatment with clenbuterol attenuated all IL-1ß-induced changes in the striatum including MBS-2 immunoreactivity and TUNEL + staining. Clenbuterol also attenuated IL-1ß-induced expression of TNF-α in the liver and the increase in circulating CINC-1 concentrations. CONCLUSIONS: The results provide evidence that clenbuterol elicits anti-inflammatory effects, suppresses the peripheral acute phase response and reduces the infiltration of neutrophils and apoptotic response to acute IL-1ß-induced brain injury. Suppression of both the central and peripheral response following clenbuterol administration may contribute to its protective properties following brain injury.
Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Brain Injuries , Clenbuterol/pharmacology , Interleukin-1beta/toxicity , Neutrophil Infiltration/drug effects , Neutrophils/metabolism , Animals , Brain Injuries/chemically induced , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/prevention & control , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Male , Neutrophils/pathology , Rats , Rats, WistarABSTRACT
Microgliosis and astrogliosis are standard pathological features of neurodegenerative disease. Microglia are primed by chronic neurodegeneration such that toll-like receptor agonists, such as LPS, drive exaggerated cytokine responses on this background. However, sterile inflammatory insults are more common than direct CNS infection in the degenerating brain and these insults drive robust IL-1ß and TNF-α responses. It is unclear whether these pro-inflammatory cytokines can directly induce exaggerated responses in the degenerating brain. We hypothesized that glial cells in the hippocampus of animals with chronic neurodegenerative disease (ME7 prion disease) would display exaggerated responses to central cytokine challenges. TNF-α or IL-1ß were administered intrahippocampally to ME7-inoculated mice and normal brain homogenate-injected (NBH) controls. Both IL-1ß and TNF-α produced much more robust IL-1ß synthesis in ME7 than in NBH animals and this occurred exclusively in microglia. However, there was strong nuclear localization of the NFκB subunit p65 in the astrocyte population, associated with marked astrocytic synthesis of the chemokines CXCL1 and CCL2 in response to both cytokine challenges in ME7 animals. Conversely, very limited expression of these chemokines was apparent in NBH animals similarly challenged. Thus, astrocytes are primed in the degenerating brain to produce exaggerated chemokine responses to acute stimulation with pro-inflammatory cytokines. Furthermore, this results in markedly increased neutrophil, T-cell, and monocyte infiltration in the diseased brain. These data have significant implications for acute sterile inflammatory insults such as stroke and traumatic brain injury occurring on a background of aging or neurodegeneration.
Subject(s)
Astrocytes/drug effects , Chemokines/metabolism , Hippocampus/pathology , Interleukin-1beta/pharmacology , Prion Diseases/pathology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Chronic Disease , Disease Models, Animal , Female , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Neutrophil Infiltration/drug effects , Prion Diseases/drug therapy , T-Lymphocytes/drug effects , Tumor Necrosis Factor-alpha/metabolismABSTRACT
The long-acting, highly lipophilic, ß2-adrenoceptor agonist clenbuterol may represent a suitable therapeutic agent for the treatment of neuroinflammation as it drives an anti-inflammatory response within the CNS. However, clenbuterol is also known to increase the expression of IL-1ß in the brain, a potent neuromodulator that plays a role in provoking sickness related symptoms including anxiety and depression-related behaviours. Here we demonstrate that, compared to the immunological stimulus lipopolysaccharide (LPS, 250µg/kg), clenbuterol (0.5mg/kg) selectively up-regulates expression of the central IL-1 system resulting in a mild stress-like response which is accompanied by a reduction in locomotor activity and food consumption in rats. We provide further evidence that clenbuterol-induced activation of the central IL-1 system occurs in a controlled and selective manner in tandem with its negative regulators IL-1ra and IL-1RII. Furthermore, we demonstrate that peripheral ß2-adrenoceptors mediate the suppression of locomotor activity and food consumption induced by clenbuterol and that these effects are not linked to the central induction of IL-1ß. Moreover, despite increasing central IL-1ß expression, chronic administration of clenbuterol (0.03mg/kg; twice daily for 21days) fails to induce anxiety or depressive-like behaviour in rats in contrast to reports of the ability of exogenously administered IL-1 to induce these symptoms in rodents. Overall, our findings suggest that clenbuterol or other selective ß2-adrenoceptor agonists could have the potential to combat neuroinflammatory or neurodegenerative disorders without inducing unwanted symptoms of depression and anxiety.
Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Anxiety/chemically induced , Behavior, Animal/drug effects , Clenbuterol/pharmacology , Depression/chemically induced , Illness Behavior/drug effects , Interleukin-1beta/drug effects , Adrenergic beta-2 Receptor Agonists/administration & dosage , Adrenergic beta-2 Receptor Agonists/adverse effects , Animals , Clenbuterol/administration & dosage , Clenbuterol/adverse effects , Male , Rats , Rats, Sprague-DawleyABSTRACT
AIMS: The processes by which neurons degenerate in chronic neurodegenerative diseases remain unclear. Synaptic loss and axonal pathology frequently precede neuronal loss and protein aggregation demonstrably spreads along neuroanatomical pathways in many neurodegenerative diseases. The spread of neuronal pathology is less studied. METHODS: We previously demonstrated severe neurodegeneration in the posterior thalamus of multiple prion disease strains. Here we used the ME7 model of prion disease to examine the nature of this degeneration in the posterior thalamus and the major brainstem projections into this region. RESULTS: We objectively quantified neurological decline between 16 and 18 weeks post-inoculation and observed thalamic subregion-selective neuronal, synaptic and axonal pathology while demonstrating relatively uniform protease-resistant prion protein (PrP) aggregation and microgliosis across the posterior thalamus. Novel amyloid precursor protein (APP) pathology was particularly prominent in the thalamic posterior (PO) and ventroposterior lateral (VPL) nuclei. The brainstem nuclei forming the major projections to these thalamic nuclei were examined. Massive neuronal loss in the PO was not matched by significant neuronal loss in the interpolaris (Sp5I), while massive synaptic loss in the ventral posteromedial nucleus (VPM) did correspond with significant neuronal loss in the principal trigeminal nucleus. Likewise, significant VPL synaptic loss was matched by significant neuronal loss in the gracile and cuneate nuclei. CONCLUSION: These findings demonstrate significant spread of neuronal pathology from the thalamus to the brainstem in prion disease. The divergent neuropathological features in adjacent neuronal populations demonstrates that there are discrete pathways to neurodegeneration in different neuronal populations.
Subject(s)
Brain Stem/pathology , Neurons/pathology , Prion Diseases/pathology , Prions/metabolism , Thalamus/pathology , Amyloid beta-Protein Precursor/metabolism , Animals , Axons/metabolism , Axons/pathology , Brain Stem/metabolism , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Neural Pathways/metabolism , Neural Pathways/pathology , Neurons/metabolism , Prion Diseases/metabolism , Thalamus/metabolismABSTRACT
Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1(-/-)) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1ß and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1(-/-) mice. IFN-ß injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-ß response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1(-/-) mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1(-/-) mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function.
Subject(s)
Brain/drug effects , Illness Behavior/drug effects , Immunity, Innate/drug effects , Inflammation/metabolism , Interferon Type I/metabolism , Interleukin-6/metabolism , Poly I-C/pharmacology , Animals , Brain/metabolism , Illness Behavior/physiology , Immunity, Innate/physiology , Interleukin-1beta/metabolism , Kynurenine/metabolism , Mice , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Tryptophan/metabolism , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Systemic inflammatory events often precipitate acute cognitive dysfunction in elderly and demented populations. Delirium is a highly prevalent neuropsychiatric syndrome that is characterized by acute inattention and cognitive dysfunction, for which prior dementia is the major predisposing factor and systemic inflammation is a frequent trigger. Inflammatory mechanisms of delirium remain unclear. We have modeled aspects of delirium during dementia by exploiting progressive neurodegeneration in the ME7 mouse model of prion disease and by superimposing systemic inflammation induced by the bacterial endotoxin lipopolysaccharide (LPS). Here, we have used this model to demonstrate that the progression of underlying disease increases the incidence, severity, and duration of acute cognitive dysfunction. This increasing susceptibility is associated with increased CNS expression of cyclooxygenase (COX)-1 in microglia and perivascular macrophages. The COX-1-specific inhibitor SC-560 provided significant protection against LPS-induced cognitive deficits, and attenuated the disease-induced increase in hippocampal and thalamic prostaglandin E2, while the COX-2-specific inhibitor NS-398 was ineffective. SC-560 treatment did not alter levels of the proinflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, or C-X-C chemokine ligand 1 in blood or brain, but systemic IL-1RA blocked LPS-induced cognitive deficits, and systemic IL-1ß was sufficient to induce similar deficits in the absence of LPS. Furthermore, the well tolerated COX inhibitor ibuprofen was protective against IL-1ß-induced deficits. These data demonstrate that progressive microglial COX-1 expression and prostaglandin synthesis can underpin susceptibility to cognitive deficits, which can be triggered by systemic LPS-induced IL-1ß. These data contribute to our understanding of how systemic inflammation and ongoing neurodegeneration interact to induce cognitive dysfunction and episodes of delirium.
Subject(s)
Brain/metabolism , Cognition Disorders , Cyclooxygenase 1/metabolism , Inflammation/complications , Prostaglandins/metabolism , Analysis of Variance , Animals , Brain/drug effects , Calcium-Binding Proteins/metabolism , Cognition Disorders/blood , Cognition Disorders/etiology , Cognition Disorders/pathology , Cyclooxygenase 1/genetics , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/blood , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation/drug effects , Inflammation/blood , Inflammation/chemically induced , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lipopolysaccharides/toxicity , Maze Learning/drug effects , Memory, Short-Term/drug effects , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Prostaglandin-E Synthases , Prostaglandins/genetics , Pyrazoles/pharmacology , RNA, MessengerABSTRACT
Double stranded RNA is generated during viral replication. The synthetic analog poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disease including autism, schizophrenia, Parkinsons disease and Alzheimers disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1 to 6 kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNF alpha responses than poly I:C of less than 500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFN beta nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFN beta binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1beta and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length, IFNAR1 and age-dependent effects on antiviral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.
ABSTRACT
Excitotoxicity is a mechanism of neuronal cell death implicated in a range of neurodegenerative conditions. Systemic administration of the excitotoxin kainic acid (KA) induces inflammation and apoptosis in the hippocampus, resulting in neuronal loss. Evidence indicates that stimulation of glial ß(2)-adrenoceptors has anti-inflammatory and neurotrophic properties that could result in neuroprotection. Consequently, in this study we examined the effect of the ß(2)-adrenoceptor agonist clenbuterol on KA-induced inflammation, neurotrophic factor expression and apoptosis in the hippocampus. Clenbuterol (0.5mg/kg) was administered to rats one hour prior to KA (10mg/kg). Epileptic behaviour induced by KA was assessed for three hours following administration using the Racine scale. Twenty-four hours later TUNEL staining in the CA3 hippocampal subfield and hippocampal caspase-3 activity was assessed to measure KA-induced apoptosis. In addition, expression of inflammatory cytokines (IL-1ß and IFN-γ), inducible nitric oxide synthase (iNOS), kynurenine pathway enzymes indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO), the microglial activation marker CD11b, and the neurotrophins BDNF and NGF were quantified in the hippocampus using real-time PCR. Whilst clenbuterol treatment did not significantly alter KA-induced epileptic behavior it ameliorated KA-induced apoptosis, and this neuroprotective effect was accompanied by reduced inflammatory cytokine expression, reduced expression of iNOS, IDO, KMO and CD11b, coupled with increased BDNF and NGF expression in KA-treated rats. In conclusion, the ß(2)-adrenoceptor agonist clenbuterol has anti-inflammatory and neurotrophic actions and elicits a neuroprotective effect in the KA model of neurodegeneration.
Subject(s)
Adrenergic beta-3 Receptor Agonists/pharmacology , Anti-Inflammatory Agents , Clenbuterol/pharmacology , Excitatory Amino Acid Agonists/toxicity , Kainic Acid/antagonists & inhibitors , Kainic Acid/toxicity , Nerve Growth Factors/metabolism , Neuroprotective Agents , Neurotoxicity Syndromes/prevention & control , Neurotoxins/toxicity , Animals , Apoptosis/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Caspase 3/metabolism , Hippocampus/pathology , In Situ Nick-End Labeling , Male , Neurotoxicity Syndromes/pathology , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Seizures/chemically induced , Seizures/prevention & controlABSTRACT
Evidence indicates that the monoamine neurotransmitter noradrenaline elicits anti-inflammatory actions in the central nervous system (CNS), and consequently may play a neuroprotective role where inflammatory events contribute to CNS pathology. Here we examined the ability of pharmacologically enhancing central noradrenergic tone to induce expression of anti-inflammatory cytokines in rat brain. Administration of the noradrenaline reuptake inhibitor reboxetine (15mg/kg; ip) combined with the alpha(2)-adrenoceptor antagonist idazoxan (1mg/kg; ip) induced interleukin-10 (IL-10) expression in rat cortex and hippocampus. In addition, these drug treatments induced IL-10 signaling as indicated by increased STAT3 phosphorylation and suppressor of cytokine signaling-3 (SOCS-3) mRNA expression. In contrast to the profound increase in IL-10 induced by the reboxetine/idazoxan combination, the other two broad spectrum anti-inflammatory cytokines IL-4 and TGF-beta were not induced by this treatment. The ability of combined treatment with reboxetine and idazoxan to induce IL-10 and SOCS3 expression was mediated by beta-adrenoceptor activation, as their induction was blocked by pre-treatment with the beta-adrenoceptor antagonist propranolol. Moreover, administration of the brain penetrant beta(2)-adrenoceptor agonist clenbuterol induced a time- and dose-dependent increase in central IL-10 and SOCS3 expression, and the ability of clenbuterol to induce IL-10 and SOCS-3 expression was blocked by the centrally acting beta-adrenoceptor antagonist, propranolol, and was mimicked by the highly selective beta(2)-adrenoceptor agonist formoterol. In all, these data indicate that increasing central noradrenergic tone induces IL-10 production and signaling in the CNS, which may protect against neurodegeneration.
Subject(s)
Brain/metabolism , Interleukin-10/metabolism , Norepinephrine/immunology , Receptors, Adrenergic, beta/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Suppressor of Cytokine Signaling Proteins/metabolism , Adrenergic Uptake Inhibitors/administration & dosage , Adrenergic Uptake Inhibitors/pharmacology , Adrenergic alpha-Antagonists/administration & dosage , Adrenergic alpha-Antagonists/pharmacology , Adrenergic beta-Agonists/administration & dosage , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Antagonists , Animals , Brain/drug effects , Brain/immunology , Cerebral Cortex/immunology , Clenbuterol/administration & dosage , Clenbuterol/pharmacology , Dose-Response Relationship, Drug , Drug Therapy, Combination , Hippocampus/immunology , Idazoxan/administration & dosage , Idazoxan/pharmacology , Injections, Intraperitoneal , Interleukin-10/immunology , Interleukin-4/genetics , Interleukin-4/metabolism , Male , Morpholines/administration & dosage , Morpholines/pharmacology , Norepinephrine/pharmacology , Phosphorylation/drug effects , Propranolol/administration & dosage , Propranolol/pharmacology , Rats , Rats, Sprague-Dawley , Reboxetine , Receptors, Adrenergic, beta/classification , Receptors, Adrenergic, beta/drug effects , Receptors, Adrenergic, beta-2 , STAT3 Transcription Factor/genetics , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolismABSTRACT
The potential of exercise or environmental enrichment to prevent or reverse age-related cognitive decline in rats has been widely investigated. The data suggest that the efficacy of these interventions as neuroprotectants may depend upon the duration and nature of the protocols and age of onset. Investigations of the mechanisms underlying these neuroprotective strategies indicate a potential role for the neurotrophin family of proteins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). In this study, we have assessed the effects of 8 months of forced exercise, begun in middle-age, on the expression of long-term potentiation (LTP) and on spatial learning in the Morris water maze in aged Wistar rats. We also assessed these measures in a cage control group and in a group of rats exposed to the stationary treadmill for the same duration as the exercised rats. Our data confirm an age-related decline in expression of LTP and in spatial learning concomitant with decreased expression of NGF and BDNF mRNA in dentate gyrus (DG). The age-related impairments in both plasticity and growth factor expression were prevented in the long-term exercised group and, surprisingly, the treadmill control group. Given the extensive handling that the treadmill control group received and their regular exposure to an environment outside the home cage, this group can be considered to have experienced environmentally enriched conditions when compared with the cage control group. Significant correlations were observed between both learning and LTP and the expression of NGF and BDNF mRNA in the dentate gyrus. We conclude that decreased expression of NGF and BDNF in the dentate gyrus of aged rats is associated with impaired LTP and spatial learning. We suggest that the reversal of these age-related impairments by enrichment and exercise may be linked with prevention of the age-related decline in expression of these growth factors and, furthermore, that enrichment is as efficacious as exercise in preventing this age-related decline.
Subject(s)
Aging/physiology , Dentate Gyrus/physiology , Long-Term Potentiation/physiology , Maze Learning/physiology , Nerve Degeneration/physiopathology , Physical Conditioning, Animal/physiology , Analysis of Variance , Animals , Brain-Derived Neurotrophic Factor/metabolism , Environment , Male , Nerve Growth Factors/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Running/physiology , Space Perception/physiology , Time FactorsABSTRACT
Short periods of forced exercise have been reported to selectively induce enhancements in hippocampal-dependent cognitive function, possibly via brain-derived neurotrophic factor (BDNF)-mediated mechanisms. In this study, we report that 1 week of treadmill running significantly enhanced both object displacement (spatial) and object substitution (nonspatial) learning. These behavioral changes were accompanied by increased expression of BDNF protein in the dentate gyrus, hippocampus, and perirhinal cortex. The effects of exercise on object substitution were mimicked by intracerebroventricular injection of BDNF protein. These data are consistent with the hypothesis that exercise has the potential to enhance cognitive function in young healthy rats, possibly via a mechanism involving increased BDNF expression in specific brain regions.
Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/physiology , Learning/physiology , Physical Conditioning, Animal/physiology , Running/physiology , Space Perception/physiology , Analysis of Variance , Animals , Dentate Gyrus/physiology , Enzyme-Linked Immunosorbent Assay , Male , Neuropsychological Tests , Rats , Rats, Wistar , Recognition, Psychology/physiology , Temporal Lobe/physiology , Time FactorsABSTRACT
Systemic administration of the ß(2)-adrenoceptor agonist clenbuterol induces expression of IL-1ß and its negative regulators, interleukin-1 receptor antagonist (IL-1ra) and the interleukin-1 type II decoy receptor (IL-1RII) in rat brain. Clenbuterol also increases central expression of the broad spectrum anti-inflammatory cytokine interleukin-10 (IL-10) and its downstream signalling molecule, suppressor of cytokine signalling-3 (SOCS-3). Here we examine the impact of combined treatment with clenbuterol (0.5mg/kg) and the glucocorticoid dexamethasone (1mg/kg) on mRNA expression of IL-1ß and the IL-1ß-inducible gene iNOS, on IκBα mRNA expression and NFκB activation, and on mRNA expression of the anti-inflammatory molecules IL-1ra, IL-1RII, IL-10 and SOCS-3 in rat cortex, striatum and hippocampus. Dexamethasone inhibited induction of IL-1ß and iNOS mRNA expression by clenbuterol in all three brain regions, without altering its ability to induce IL-1ra mRNA expression. In the case of IL-1RII, dexamethasone further augmented clenbuterol-induced IL-1RII mRNA expression in hippocampus and striatum. These data highlight a mechanistic dissociation between the ability of ß(2)-adrenoceptor activation to induce expression of IL-1ß, and its negative regulators IL-1ra and IL-1RII in the brain. Treatment with either dexamethasone or clenbuterol alone independently induced IκBα mRNA expression, and elicited a concomitant decrease in the DNA binding of NFκB in all three brain regions. In the hippocampus and striatum dexamethasone treatment did not influence the ability of clenbuterol to induce IL-10 mRNA expression. In contrast in the cortex, induction of IL-10 and SOCS-3 mRNA expression by clenbuterol administered in combination with dexamethasone was less than induced by clenbuterol alone. Overall these data indicate that combined treatment with dexamethasone and the ß(2)-adrenoceptor agonist clenbuterol elicit complementary anti-inflammatory actions in the CNS. Specifically, dexamethasone inhibits expression of pro-inflammatory cytokines, whereas clenbuterol has the added benefit of promoting expression of anti-inflammatory molecules including IL-1ra, IL-1RII, IL-10 and SOCS-3.
Subject(s)
Adrenergic beta-Agonists/pharmacology , Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Clenbuterol/pharmacology , Dexamethasone/pharmacology , Signal Transduction/drug effects , Animals , Brain/immunology , Cytokines/biosynthesis , Drug Synergism , Gene Expression/drug effects , Interleukin-1/immunology , Interleukin-1/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Male , Rats , Rats, Sprague-Dawley , Signal Transduction/immunologyABSTRACT
Physical activity has been reported to improve cognitive function in humans and rodents, possibly via a brain-derived neurotrophic factor (BDNF)-regulated mechanism. In this study of human subjects, we have assessed the effects of acute and chronic exercise on performance of a face-name matching task, which recruits the hippocampus and associated structures of the medial temporal lobe, and the Stroop word-colour task, which does not, and have assessed circulating concentrations of BDNF and IGF-1 in parallel. The results show that a short period of high-intensity cycling results in enhancements in performance of the face-name matching, but not the Stroop, task. These changes in cognitive function were paralleled by increased concentration of BDNF, but not IGF-1, in the serum of exercising subjects. 3 weeks of cycling training had no effect on cardiovascular fitness, as assessed by VO2 scores, cognitive function, or serum BDNF concentration. Increases in fitness, cognitive function and serum BDNF response to acute exercise were observed following 5 weeks of aerobic training. These data indicate that both acute and chronic exercise improve medial temporal lobe function concomitant with increased concentrations of BDNF in the serum, suggesting a possible functional role for this neurotrophic factor in exercise-induced cognitive enhancement in humans.
Subject(s)
Brain-Derived Neurotrophic Factor/blood , Exercise/physiology , Hippocampus/physiology , Recognition, Psychology/physiology , Analysis of Variance , Discrimination, Psychological/physiology , Humans , Immunoassay , Insulin-Like Growth Factor I/metabolism , Male , Neuropsychological Tests , Pattern Recognition, Visual , Photic Stimulation , Time Factors , Young AdultABSTRACT
Evidence indicates that noradrenaline elicits anti-inflammatory actions in the central nervous system (CNS), and plays a neuroprotective role where inflammatory events contribute to pathology. Here we examined the ability of pharmacological enhancement of central noradrenergic tone to impact upon activation of the IL-1 system in rat brain. Treatment with the noradrenaline reuptake inhibitor reboxetine combined with the alpha(2)-adrenoceptor antagonist idazoxan induced expression of IL-1beta as well as its negative regulators, IL-1 receptor antagonist (IL-1ra) and IL-1 type II receptor (IL-1RII) in rat cortex. The ability of reboxetine/idazoxan treatment to activate the IL-1 system was mediated by beta-adrenoceptors, as the aforementioned effects were blocked by the beta-adrenoceptor antagonist propranolol. Moreover, administration of the brain penetrant beta(2)-adrenoceptor agonist clenbuterol induced expression of IL-1beta, IL-1ra and IL-1RII in rat brain. This action was selective to the IL-1 system, as other inflammatory cytokines including TNF-alpha, IL-6 or IFN-gamma were not induced by clenbuterol. Induction of IL-1beta was accompanied by activation of NFkappaB and of the MAP kinase ERK, and clenbuterol also induced expression of the IL-1beta-inducible gene CINC-1. The ability of clenbuterol to activate the IL-1 system was blocked by propranolol, and was mimicked by the highly selective beta(2)-adrenoceptor agonist formoterol. Despite the ability of clenbuterol to activate the central IL-1 system, it largely combated the neuroinflammatory response induced by systemic inflammatory stimulus (bacterial lipopolysaccharide; LPS). Specifically, whilst the ability of clenbuterol to induce expression of IL-1RII and IL-1Ra was maintained following the inflammatory challenge, its ability to induce IL-1beta was reduced. In addition, clenbuterol suppressed LPS-induced expression of the inflammatory cytokines TNF-alpha and IL-6, the inflammatory chemokines RANTES and IP-10, the co-stimulatory molecules CD40 and ICAM-1. Thus overall, clenbuterol suppresses the innate inflammatory response in rat brain.