Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Affiliation country
Publication year range
1.
Blood ; 143(13): 1231-1241, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38145560

ABSTRACT

ABSTRACT: Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells. In our first-in-human phase 1 study (NCT0308190), second-generation autologous CD5.CAR T cells were manufactured from patients with r/r T-cell malignancies. Here, we report safety and efficacy data from a cohort of patients with mature T-cell lymphoma (TCL). Among the 17 patients with TCL enrolled, CD5 CAR T cells were successfully manufactured for 13 out of 14 attempted lines (93%) and administered to 9 (69%) patients. The overall response rate (complete remission or partial response) was 44%, with complete responses observed in 2 patients. The most common grade 3 or higher adverse events were cytopenias. No grade 3 or higher cytokine release syndrome or neurologic events occurred. Two patients died during the immediate toxicity evaluation period due to rapidly progressive disease. These results demonstrated that CD5.CAR T cells are safe and can induce clinical responses in patients with r/r CD5-expressing TCLs without eliminating endogenous T cells or increasing infectious complications. More patients and longer follow-up are needed for validation. This trial was registered at www.clinicaltrials.gov as #NCT0308190.


Subject(s)
Immunotherapy, Adoptive , Lymphoma, T-Cell , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/drug therapy , T-Lymphocytes , Chronic Disease , Lymphoma, T-Cell/drug therapy , Antigens, CD19
2.
Lancet Oncol ; 25(4): 488-500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547893

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma. METHODS: LOKON001 was a non-randomised, phase 1/2 study conducted at the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA, and consisted of two arms conducted sequentially; the results of arm 1 are presented here. In arm 1, patients 18 years or older with previously treated or treatment-naive unresectable or metastatic pancreatic ductal adenocarcinoma were treated with standard 28-day cycles of intravenous nab-paclitaxel 125 mg/m2 plus gemcitabine 1000 mg/m2 (up to 12 cycles) and intratumoural injections of LOAd703 every 2 weeks. Patients were assigned using Bayesian optimal interval design to receive 500 µL of LOAd703 at 5 × 1010 (dose 1), 1 × 1011 (dose 2), or 5 × 1011 (dose 3) viral particles per injection, injected endoscopically or percutaneously into the pancreatic tumour or a metastasis for six injections. The primary endpoints were safety and treatment-emergent immune response in patients who received at least one dose of LOAd703, and antitumour activity was a secondary endpoint. This study was registered with ClinicalTrials.gov, NCT02705196, arm 2 is ongoing and open to new participants. FINDINGS: Between Dec 2, 2016, and Oct 17, 2019, 23 patients were assessed for eligibility, leading to 22 patients being enrolled. One patient withdrew consent, resulting in 21 patients (13 [62%] men and eight [38%] women) assigned to a dose group (three to dose 1, four to dose 2, and 14 to dose 3). 21 patients were evaluable for safety. Median follow-up time was 6 months (IQR 4-10), and data cutoff was Jan 5, 2023. The most common treatment-emergent adverse events overall were anaemia (96 [8%] of 1237 events), lymphopenia (86 [7%] events), hyperglycaemia (70 [6%] events), leukopenia (63 [5%] events), hypertension (62 [5%] events), and hypoalbuminaemia (61 [5%] events). The most common adverse events attributed to LOAd703 were fever (14 [67%] of 21 patients), fatigue (eight [38%]), chills (seven [33%]), and elevated liver enzymes (alanine aminotransferase in five [24%], alkaline phosphatase in four [19%], and aspartate aminotransferase in four [19%]), all of which were grade 1-2, except for a transient grade 3 aminotransferase elevation occurring at dose 3. A maximum tolerated dose was not reached, thereby establishing dose 3 as the highest-evaluated safe dose when combined with nab-paclitaxel plus gemcitabine. Proportions of CD8+ effector memory cells and adenovirus-specific T cells increased after LOAd703 injections in 15 (94%) of 16 patients for whom T-cell assays could be performed. Eight (44%, 95% CI 25-66) of 18 patients evaluable for activity had an objective response. INTERPRETATION: Combining LOAd703 with nab-paclitaxel plus gemcitabine in patients with advanced pancreatic ductal adenocarcinoma was feasible and safe. To build upon this novel chemoimmunotherapeutic approach, arm 2 of LOKON001, which combines LOAd703, nab-paclitaxel plus gemcitabine, and atezolizumab, is ongoing. FUNDING: Lokon Pharma, the Swedish Cancer Society, and the Swedish Research Council.


Subject(s)
Adenocarcinoma , Anemia , Oncolytic Viruses , Pancreatic Neoplasms , Thrombocytopenia , Male , Humans , Female , Gemcitabine , Oncolytic Viruses/genetics , Bayes Theorem , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , Paclitaxel , Anemia/chemically induced , Thrombocytopenia/chemically induced , Adenocarcinoma/therapy , Adenocarcinoma/drug therapy , Albumins , Genetic Therapy/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Tumor Microenvironment
3.
Blood ; 139(17): 2706-2711, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35134127

ABSTRACT

Hematopoietic stem cell transplant (HSCT) is a curative option for patients with high-risk acute lymphoblastic leukemia (ALL), but relapse remains a major cause of treatment failure. To prevent disease relapse, we prepared and infused donor-derived multiple leukemia antigen-specific T cells (mLSTs) targeting PRAME, WT1, and survivin, which are leukemia-associated antigens frequently expressed in B- and T-ALL. Our goal was to maximize the graft-versus-leukemia effect while minimizing the risk of graft-versus-host disease (GVHD). We administered mLSTs (dose range, 0.5 × 107 to 2 × 107 cells per square meter) to 11 patients with ALL (8 pediatric, 3 adult), and observed no dose-limiting toxicity, acute GVHD or cytokine release syndrome. Six of 8 evaluable patients remained in long-term complete remission (median: 46.5 months; range, 9-51). In these individuals we detected an increased frequency of tumor-reactive T cells shortly after infusion, with activity against both targeted and nontargeted, known tumor-associated antigens, indicative of in vivo antigen spreading. By contrast, this in vivo amplification was absent in the 2 patients who experienced relapse. In summary, infusion of donor-derived mLSTs after allogeneic HSCT is feasible and safe and may contribute to disease control, as evidenced by in vivo tumor-directed T-cell expansion. Thus, this approach represents a promising strategy for preventing relapse in patients with ALL.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Adult , Child , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukemia/therapy , Recurrence , Transplantation, Homologous/adverse effects
4.
Blood ; 140(1): 16-24, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35325065

ABSTRACT

Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies. We retrospectively reviewed data from 340 patients treated across 27 investigator-initiated pediatric and adult clinical trials at our center. All patients received IE cells genetically modified with γ-retroviral vectors to treat relapsed and/or refractory hematologic or solid malignancies. In a cumulative 1027 years of long-term follow-up, 13 patients (3.8%) developed another cancer with a total of 16 events (4 hematologic malignancies and 12 solid tumors). The 5-year cumulative incidence of a first subsequent malignancy in the recipients of genetically modified IE cells was 3.6% (95% confidence interval, 1.8% to 6.4%). For 11 of the 16 subsequent tumors, biopsies were available, and no sample was transgene positive by polymerase chain reaction. Replication-competent retrovirus testing of peripheral blood mononuclear cells was negative in the 13 patients with subsequent malignancies tested. Rates of subsequent malignancy were low and comparable to standard chemotherapy. These results suggest that the administration of IE cells genetically modified with γ retroviral vectors does not increase the risk for subsequent malignancy.


Subject(s)
Hematologic Neoplasms , Neoplasms , Adult , Child , Follow-Up Studies , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , Humans , Leukocytes, Mononuclear , Neoplasms/genetics , Neoplasms/therapy , Retrospective Studies
5.
Cytotherapy ; 26(3): 261-265, 2024 03.
Article in English | MEDLINE | ID: mdl-38149948

ABSTRACT

Chimeric antigen receptor (CAR) T-cells are an emerging therapy for refractory lymphomas. Clonal hematopoiesis (CH), the preferential outgrowth of mutated bone marrow progenitors, is enriched in lymphoma patients receiving CAR-T cells. CAR-T therapy requires conditioning chemotherapy and often induces systemic inflammatory reactions, both of which have been shown to promote expansion of CH clones. Thus, we hypothesized that pre-existing CH clones could expand during CAR-T cell treatment. We measured CH at 154 timepoints longitudinally sampled from 26 patients receiving CD30.CAR-T therapy for CD30+ lymphomas on an investigational protocol (NCT02917083). Pre-treatment CH was present in 54% of individuals and did not correlate with survival outcomes or inflammatory toxicities. Longitudinal tracking of single clones in individual patients revealed distinct clone growth dynamics. Initially small clones, defined as VAF <1%, expanded following CAR-T administration, compared with relatively muted expansions of larger clones (3.37-fold vs. 1.20-fold, P = 0.0014). Matched clones were present at low magnitude in the infused CD30.CAR-T product for all CH cases but did not affect the product's immunophenotype or transduction efficiency. As cellular immunotherapies expand to become frontline treatments for hematological malignancies, our data indicates CAR-T recipients could be enriched for CH, and further longitudinal studies centered on CH complications in this population are warranted.


Subject(s)
Lymphoma , Receptors, Chimeric Antigen , Humans , Clonal Hematopoiesis , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Lymphoma/therapy , Immunotherapy , Hematopoiesis/genetics
6.
Mol Ther ; 31(3): 801-809, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36518078

ABSTRACT

The clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement. To date, we have found no evidence of RCR in 338 pre-treatment and 1,595 post-treatment blood samples from 737 patients associated with 60 clinical trials. Most samples (75%) were obtained within 1 year of treatment, and samples as far out as 9 years after treatment were analyzed. The majority of trials (93%) were cancer immunotherapy, and 90% of the trials used vector products produced with the PG13 packaging cell line. The data presented here provide further evidence that current manufacturing methods generate RCR-free products and support the overall safety profile of retroviral gene therapy.


Subject(s)
Retroviridae , Virus Replication , Humans , Retroviridae/genetics , Genetic Vectors/genetics , Cell Line , Genetic Therapy/adverse effects
7.
Blood ; 137(19): 2585-2597, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33270816

ABSTRACT

Relapse after allogeneic hematopoietic stem cell transplantation (HCT) is the leading cause of death in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Infusion of unselected donor lymphocytes (DLIs) enhances the graft-versus-leukemia (GVL) effect. However, because the infused lymphocytes are not selected for leukemia specificity, the GVL effect is often accompanied by life-threatening graft-versus-host disease (GVHD), related to the concurrent transfer of alloreactive lymphocytes. Thus, to minimize GVHD and maximize GVL, we selectively activated and expanded stem cell donor-derived T cells reactive to multiple antigens expressed by AML/MDS cells (PRAME, WT1, Survivin, and NY-ESO-1). Products that demonstrated leukemia antigen specificity were generated from 29 HCT donors. In contrast to DLIs, leukemia-specific T cells (mLSTs) selectively recognized and killed leukemia antigen-pulsed cells, with no activity against recipient's normal cells in vitro. We administered escalating doses of mLSTs (0.5 to 10 × 107 cells per square meter) to 25 trial enrollees, 17 with high risk of relapse and 8 with relapsed disease. Infusions were well tolerated with no grade >2 acute or extensive chronic GVHD seen. We observed antileukemia effects in vivo that translated into not-yet-reached median leukemia-free and overall survival at 1.9 years of follow-up and objective responses in the active disease cohort (1 complete response and 1 partial response). In summary, mLSTs are safe and promising for the prevention and treatment of AML/MDS after HCT. This trial is registered at www.clinicaltrials.com as #NCT02494167.


Subject(s)
Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute/therapy , Lymphocyte Transfusion , Myelodysplastic Syndromes/therapy , Salvage Therapy , T-Lymphocytes/transplantation , Adolescent , Adult , Aged , Allografts , Antigens, Neoplasm/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Combined Modality Therapy , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Humans , Leukemia, Myeloid, Acute/drug therapy , Lymphocyte Transfusion/adverse effects , Male , Middle Aged , Myelodysplastic Syndromes/drug therapy , Recurrence , T-Cell Antigen Receptor Specificity , T-Lymphocytes/immunology , Tissue Donors , Young Adult
8.
Haematologica ; 108(7): 1840-1850, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36373249

ABSTRACT

Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron'). The feasibility of making and safely utilizing such virus-specific T cells clinically was assessed by administering partially HLA-matched, third-party, cryopreserved SARS-CoV-2-specific T cells (ALVR109) in combination with other antiviral agents to four individuals who were hospitalized with COVID-19. This study establishes the feasibility of preparing and delivering off-the-shelf, SARS-CoV-2-directed, virus-specific T cells to patients with COVID-19 and supports the clinical use of these products outside of the profoundly immune compromised setting (ClinicalTrials.gov number, NCT04401410).


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Humans , Lymphocytes , SARS-CoV-2
9.
Cytotherapy ; 25(7): 712-717, 2023 07.
Article in English | MEDLINE | ID: mdl-37097267

ABSTRACT

Patient interest in non-trial access pathways to investigational cell-and gene-based interventions, such as expanded access in the USA, is increasing, while the regulatory and business environments for non-trial access in the cell and gene therapy field are shifting. Against this background, in 2022 the International Society for Cell & Gene Therapy (ISCT) established a Working Group on Expanded Access to identify practical, ethical, and regulatory issues emerging from the use (and possible misuse) of the expanded access pathway in the cell and gene therapy field. In this Short Report, the Working Group sets the stage for its future activities by analyzing the history of expanded access and identifying three examples of questions that we anticipate arising as uses of expanded access for investigational cell and gene-based interventions increase and evolve.


Subject(s)
Compassionate Use Trials , Drugs, Investigational , Humans , Genetic Therapy , Genetic Engineering
10.
Cytotherapy ; 25(9): 920-929, 2023 09.
Article in English | MEDLINE | ID: mdl-37517865

ABSTRACT

The field of regenerative medicine, including cellular immunotherapies, is on a remarkable growth trajectory. Dozens of cell-, tissue- and gene-based products have received marketing authorization worldwide while hundreds-to-thousands are either in preclinical development or under clinical investigation in phased clinical trials. However, the promise of regenerative therapies has also given rise to a global industry of direct-to-consumer offerings of prematurely commercialized cell and cell-based products with unknown safety and efficacy profiles. Since its inception, the International Society for Cell & Gene Therapy Committee on the Ethics of Cell and Gene Therapy has opposed the premature commercialization of unproven cell- and gene-based interventions and supported the development of evidence-based advanced therapy products. In the present Guide, targeted at International Society for Cell & Gene Therapy members, we analyze this industry, focusing in particular on distinctive features of unproven cell and cell-based products and the use of tokens of scientific legitimacy as persuasive marketing devices. We also provide an overview of reporting mechanisms for patients who believe they have been harmed by administration of unapproved and unproven products and suggest practical strategies to address the direct-to-consumer marketing of such products. Development of this Guide epitomizes our continued support for the ethical and rigorous development of cell and cell-based products with patient safety and therapeutic benefit as guiding principles.


Subject(s)
Cell- and Tissue-Based Therapy , Marketing , Humans , Regenerative Medicine , Genetic Therapy
11.
Blood ; 132(22): 2351-2361, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30262660

ABSTRACT

Autologous T cells targeting Epstein-Barr virus (EBV) latent membrane proteins (LMPs) have shown safety and efficacy in the treatment of patients with type 2 latency EBV-associated lymphomas for whom standard therapies have failed, including high-dose chemotherapy followed by autologous stem-cell rescue. However, the safety and efficacy of allogeneic donor-derived LMP-specific T cells (LMP-Ts) have not been established for patients who have undergone allogeneic hematopoietic stem-cell transplantation (HSCT). Therefore, we evaluated the safety and efficacy of donor-derived LMP-Ts in 26 patients who had undergone allogeneic HSCT for EBV-associated natural killer/T-cell or B-cell lymphomas. Seven patients received LMP-Ts as therapy for active disease, and 19 were treated with adjuvant therapy for high-risk disease. There were no immediate infusion-related toxicities, and only 1 dose-limiting toxicity potentially related to T-cell infusion was seen. The 2-year overall survival (OS) was 68%. Additionally, patients who received T-cell therapy while in complete remission after allogeneic HSCT had a 78% OS at 2 years. Patients treated for B-cell disease (n = 10) had a 2-year OS of 80%. Patients with T-cell disease had a 2-year OS of 60%, which suggests an improvement compared with published posttransplantation 2-year OS rates of 30% to 50%. Hence, this study shows that donor-derived LMP-Ts are a safe and effective therapy to prevent relapse after transplantation in patients with B cell- or T cell-derived EBV-associated lymphoma or lymphoproliferative disorder and supports the infusion of LMP-Ts as adjuvant therapy to improve outcomes in the posttransplantation setting. These trials were registered at www.clinicaltrials.gov as #NCT00062868 and #NCT01956084.


Subject(s)
Epstein-Barr Virus Infections/complications , Hematopoietic Stem Cell Transplantation/methods , Herpesvirus 4, Human/immunology , Lymphoma, B-Cell/therapy , Lymphoma, T-Cell/therapy , Neoplasm Recurrence, Local/prevention & control , T-Lymphocytes/transplantation , Adolescent , Adult , Child , Child, Preschool , Epstein-Barr Virus Infections/immunology , Female , Herpesvirus 4, Human/isolation & purification , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/virology , Lymphoma, T-Cell/immunology , Lymphoma, T-Cell/virology , Male , Middle Aged , Neoplasm Recurrence, Local/immunology , T-Lymphocytes/immunology , Transplantation, Homologous/methods , Treatment Outcome , Viral Matrix Proteins/immunology , Young Adult
12.
Mol Ther ; 26(12): 2727-2737, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30309819

ABSTRACT

Second-generation (2G) chimeric antigen receptors (CARs) targeting CD19 are highly active against B cell malignancies, but it is unknown whether any of the costimulatory domains incorporated in the CAR have superior activity to others. Because CD28 and 4-1BB signaling activate different pathways, combining them in a single third-generation (3G) CAR may overcome the limitations of each individual costimulatory domain. We designed a clinical trial in which two autologous CD19-specific CAR-transduced T cell products (CD19.CARTs), 2G (with CD28 only) and 3G (CD28 and 4-1BB), were infused simultaneously in 16 patients with relapsed or refractory non-Hodgkin's lymphoma. 3G CD19.CARTs had superior expansion and longer persistence than 2G CD19.CARTs. This difference was most striking in the five patients with low disease burden and few circulating normal B cells, in whom 2G CD19.CARTs had limited expansion and persistence and correspondingly reduced area under the curve. Of the 11 patients with measurable disease, three achieved complete responses and three had partial responses. Cytokine release syndrome occurred in six patients but was mild, and no patient required anti-IL-6 therapy. Hence, 3G CD19.CARTs combining 4-1BB with CD28 produce superior CART expansion and may be of particular value when treating low disease burden in patients whose normal B cells are depleted by prior therapy.


Subject(s)
Antigens, CD19/immunology , Immunotherapy, Adoptive , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , Aged , Combined Modality Therapy , Female , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Lymphoma, Non-Hodgkin/diagnosis , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/metabolism , Transplantation, Autologous , Treatment Outcome
13.
Mol Ther ; 25(9): 2214-2224, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28602436

ABSTRACT

Targeting disialoganglioside (GD2) on neuroblastoma (NB) with T cells expressing a first-generation chimeric antigen receptor (CAR) was safe, but the cells had poor expansion and long-term persistence. We developed a third-generation GD2-CAR (GD2-CAR3) and hypothesized that GD2-CAR3 T cells (CARTs) would be safe and effective. This phase 1 study enrolled relapsed or refractory NB patients in three cohorts. Cohort 1 received CART alone, cohort 2 received CARTs plus cyclophosphamide and fludarabine (Cy/Flu), and cohort 3 was treated with CARTs, Cy/Flu, and a programmed death-1 (PD-1) inhibitor. Eleven patients were treated with CARTs. The infusions were safe, and no dose-limiting toxicities occurred. CARTs were detectable in cohort 1, but the lymphodepletion induced by Cy/Flu increased circulating levels of the homeostatic cytokine interleukin (IL)-15 (p = 0.003) and increased CART expansion by up to 3 logs (p = 0.03). PD-1 inhibition did not further enhance expansion or persistence. Antitumor responses at 6 weeks were modest. We observed a striking expansion of CD45/CD33/CD11b/CD163+ myeloid cells (change from baseline, p = 0.0126) in all patients, which may have contributed to the modest early antitumor responses; the effect of these cells merits further study. Thus, CARTs are safe, and Cy/Flu can further increase their expansion.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Immunotherapy, Adoptive , Neuroblastoma/immunology , Neuroblastoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Antigen, T-Cell/metabolism , Recombinant Fusion Proteins , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adolescent , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Child , Child, Preschool , Cohort Studies , Combined Modality Therapy , Cytokines/blood , Female , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Lymphocyte Count , Lymphocyte Depletion , Male , Molecular Targeted Therapy , Myeloid Cells/metabolism , Neuroblastoma/mortality , Neuroblastoma/pathology , Receptors, Antigen, T-Cell/genetics , Transplantation Conditioning , Treatment Outcome , Young Adult
14.
Blood ; 125(26): 4103-13, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-25977584

ABSTRACT

To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >10(4) alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3(+)CD19(+) T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103.


Subject(s)
Caspase 9/genetics , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , T-Lymphocytes/transplantation , Adolescent , Child , Child, Preschool , Female , Flow Cytometry , Genes, Transgenic, Suicide , Haplotypes , Hematopoietic Stem Cell Transplantation/methods , Humans , Lymphoproliferative Disorders/surgery , Male , Middle Aged , Organic Chemicals/therapeutic use , Real-Time Polymerase Chain Reaction , Young Adult
15.
Blood ; 123(25): 3895-905, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24753538

ABSTRACT

Adoptive transfer of donor-derived T lymphocytes expressing a safety switch may promote immune reconstitution in patients undergoing haploidentical hematopoietic stem cell transplant (haplo-HSCT) without the risk for uncontrolled graft versus host disease (GvHD). Thus, patients who develop GvHD after infusion of allodepleted donor-derived T cells expressing an inducible human caspase 9 (iC9) had their disease effectively controlled by a single administration of a small-molecule drug (AP1903) that dimerizes and activates the iC9 transgene. We now report the long-term follow-up of 10 patients infused with such safety switch-modified T cells. We find long-term persistence of iC9-modified (iC9-T) T cells in vivo in the absence of emerging oligoclonality and a robust immunologic benefit, mediated initially by the infused cells themselves and subsequently by an apparently accelerated reconstitution of endogenous naive T lymphocytes. As a consequence, these patients have immediate and sustained protection from major pathogens, including cytomegalovirus, adenovirus, BK virus, and Epstein-Barr virus in the absence of acute or chronic GvHD, supporting the beneficial effects of this approach to immune reconstitution after haplo-HSCT. This study was registered at www.clinicaltrials.gov as #NCT00710892.


Subject(s)
Caspase 9/genetics , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocytes/transplantation , Transgenes/genetics , Adolescent , Aspergillosis/immunology , Aspergillosis/microbiology , Aspergillosis/prevention & control , Aspergillus fumigatus/immunology , Caspase 9/biosynthesis , Child , Child, Preschool , Enzyme Induction/drug effects , Female , Follow-Up Studies , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Humans , Immunotherapy, Adoptive/methods , Lymphoma, Large-Cell, Anaplastic/immunology , Lymphoma, Large-Cell, Anaplastic/therapy , Male , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/therapy , Organic Chemicals/administration & dosage , Organic Chemicals/therapeutic use , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Transplantation, Homologous , Treatment Outcome , Virus Diseases/immunology , Virus Diseases/prevention & control , Virus Diseases/virology
16.
Blood ; 121(26): 5113-23, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23610374

ABSTRACT

Virus-specific T cell (VST) lines could provide useful antiviral prophylaxis and treatment of immune-deficient patients if it were possible to avoid the necessity of generating a separate line for each patient, often on an emergency basis. We prepared a bank of 32 virus-specific lines from individuals with common HLA polymorphisms who were immune to Epstein-Barr virus (EBV), cytomegalovirus, or adenovirus. A total of 18 lines were administered to 50 patients with severe, refractory illness because of infection with one of these viruses after hematopoietic stem cell transplant. The cumulative rates of complete or partial responses at 6 weeks postinfusion were 74.0% (95% CI, 58.5%-89.5%) for the entire group (n = 50), 73.9% (95% CI, 51.2% -96.6%) for cytomegalovirus (n = 23), 77.8% for adenovirus (n = 18), and 66.7% (95% CI, 36.9%-96.5%) for EBV (n = 9). Only 4 responders had a recurrence or progression. There were no immediate infusion-related adverse events, and de novo graft-versus-host disease developed in only 2 patients. Despite the disparity between the lines and their recipients, the mean frequency of VSTs increased significantly postinfusion, coincident with striking decreases in viral DNA and resolution of clinical symptoms. The use of banked third-party VSTs is a feasible and safe approach to rapidly treat severe or intractable viral infections after stem cell transplantation. This study is registered at www.clinicaltrials.gov as NCT00711035.


Subject(s)
Adenoviridae Infections/prevention & control , Cytomegalovirus Infections/prevention & control , Epstein-Barr Virus Infections/prevention & control , Graft vs Host Disease/prevention & control , Hematologic Neoplasms/complications , Hematopoietic Stem Cell Transplantation/adverse effects , T-Lymphocytes, Cytotoxic/immunology , Adenoviridae/pathogenicity , Adenoviridae Infections/etiology , Adolescent , Adult , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/etiology , Epstein-Barr Virus Infections/etiology , Female , Graft vs Host Disease/etiology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/virology , Herpesvirus 4, Human/pathogenicity , Humans , Male , Prognosis , Transplantation, Homologous
17.
Blood ; 122(17): 2965-73, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24030379

ABSTRACT

Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control.


Subject(s)
Antigens, CD19/immunology , B-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , T-Lymphocytes/transplantation , Adenoviridae/immunology , Adult , Antigens, CD19/genetics , Antineoplastic Agents/therapeutic use , B-Lymphocytes/pathology , Child , Cytomegalovirus/immunology , Female , Gene Expression , Herpesvirus 4, Human/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/virology , Male , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/virology , Protein Engineering , Recurrence , T-Lymphocytes/immunology , T-Lymphocytes/virology , Transplantation, Homologous
18.
N Engl J Med ; 365(18): 1673-83, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-22047558

ABSTRACT

BACKGROUND: Cellular therapies could play a role in cancer treatment and regenerative medicine if it were possible to quickly eliminate the infused cells in case of adverse events. We devised an inducible T-cell safety switch that is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iCasp9) becomes activated and leads to the rapid death of cells expressing this construct. METHODS: We tested the activity of our safety switch by introducing the gene into donor T cells given to enhance immune reconstitution in recipients of haploidentical stem-cell transplants. Patients received AP1903, an otherwise bioinert small-molecule dimerizing drug, if graft-versus-host disease (GVHD) developed. We measured the effects of AP1903 on GVHD and on the function and persistence of the cells containing the iCasp9 safety switch. RESULTS: Five patients between the ages of 3 and 17 years who had undergone stem-cell transplantation for relapsed acute leukemia were treated with the genetically modified T cells. The cells were detected in peripheral blood from all five patients and increased in number over time, despite their constitutive transgene expression. A single dose of dimerizing drug, given to four patients in whom GVHD developed, eliminated more than 90% of the modified T cells within 30 minutes after administration and ended the GVHD without recurrence. CONCLUSIONS: The iCasp9 cell-suicide system may increase the safety of cellular therapies and expand their clinical applications. (Funded by the National Heart, Lung, and Blood Institute and the National Cancer Institute; ClinicalTrials.gov number, NCT00710892.).


Subject(s)
Caspase 9/genetics , Genes, Transgenic, Suicide , Graft vs Host Disease/therapy , Immunotherapy, Adoptive , T-Lymphocytes/transplantation , Tacrolimus Binding Proteins/genetics , Adolescent , Apoptosis , Caspase 9/metabolism , Child , Child, Preschool , Female , Gene Transfer Techniques , Humans , Leukemia/therapy , Male , Organic Chemicals/therapeutic use , Recurrence , Stem Cell Transplantation , T-Lymphocytes/immunology
19.
Res Sq ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38659815

ABSTRACT

We report long-term outcomes up to 18 years of a clinical trial treating children with neuroblastoma with EBV-specific T lymphocytes and CD3-activated T cells - each expressing a first-generation chimeric antigen receptor targeting GD2 with barcoded transgenes to allow tracking of each population. Of 11 patients with active disease at infusion, three patients achieved a complete response that was sustained in 2, one for 8 years until lost to follow up and one for 18+ years. Of eight patients with a history of relapse or at high risk of recurrence, five are disease-free at their last follow-up between 10-14 years post-infusion. Intermittent low levels of transgene were detected during the follow up period with significantly greater persistence in those who were long-term survivors. In conclusion, patients with relapsed/refractory neuroblastoma achieved long-term disease control after receiving GD2 CAR-T cell therapy including one patient now in remission of relapsed disease for >18 years.

20.
Transplant Cell Ther ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762057

ABSTRACT

Genetically modified cell therapies (GMCT), particularly immune effector cells (IEC) such as chimeric receptor antigen (CAR) T cells, have shown promise in curing cancer and rare diseases after a single treatment course. Following close behind CAR T approvals are GMCT based on hematopoietic stem cells, such as products developed for hemoglobinopathies and other disorders. Academically sponsored GMCT products, often developed in academic centers without industry involvement, face challenges in sustaining access after completion of early phase studies when there is no commercial partner invested in completing registration trials for marketing applications. The American Society for Transplantation and Cellular Therapy (ASTCT) formed a task force named ACT To Sustain (Adoptive Cell Therapy to Sustain) to address the "valley of death" of academic GMCT products. This paper presents the task force's findings and considerations regarding financial sustainability of academically sponsored GMCT products in the absence of commercial development. We outline case scenarios illustrating barriers to maintaining access to promising GMCT developed by academic centers. The paper also delves into the current state of GMCT development, commercialization, and reimbursement, citing examples of abandoned products, cost estimates associated with GMCT manufacturing and real-world use of cost recovery. We propose potential solutions to address the financial, regulatory, and logistical challenges associated with sustaining access to academically sponsored GMCT products and to ensure that products with promising results do not languish in a "valley of death" due to financial or implementational barriers. The suggestions include aligning US Food and Drug Administration (FDA) designations with benefit coverage, allowing for cost recovery of certain products as a covered benefit, and engaging with regulators and policy makers to discuss alternative pathways for academic centers to provide access. We stress the importance of sustainable access to GMCT and call for collaborative efforts to develop regulatory pathways that support access to academically sponsored GMCT products.

SELECTION OF CITATIONS
SEARCH DETAIL