Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Cell ; 184(22): 5670-5685.e23, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34637702

ABSTRACT

We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.


Subject(s)
Biosensing Techniques , Peptides/chemistry , Single Molecule Imaging , Animals , Cell Adhesion , Cell Line , Cell Survival , Embryo, Mammalian/cytology , Enzyme Activation , Fibroblasts/metabolism , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Mice , Nanoparticles/chemistry , Protein Conformation , src-Family Kinases/metabolism
2.
Cell ; 178(2): 458-472.e19, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31178119

ABSTRACT

mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous because multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real time. We find that start site selection is largely stochastic but that the probability of using a particular start site differs among mRNA molecules and can be dynamically regulated over time. This study provides key insights into translation start site selection heterogeneity and provides a powerful toolbox to visualize complex translation dynamics.


Subject(s)
Fluorescent Dyes/chemistry , RNA, Messenger/metabolism , Single Molecule Imaging/methods , 3' Untranslated Regions , 5' Untranslated Regions , Cell Line, Tumor , Genes, Reporter , HEK293 Cells , Humans , Peptide Chain Initiation, Translational , RNA, Messenger/chemistry , Ribosomes/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology
3.
Cell ; 165(3): 593-605, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27062924

ABSTRACT

The estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER-binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Moreover, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha/metabolism , Chromatin/metabolism , Deoxyribonucleases/metabolism , Humans , MCF-7 Cells , Receptors, Estrogen/genetics , Receptors, Glucocorticoid/genetics , Transcription Factors/metabolism
4.
Nat Methods ; 19(2): 149-158, 2022 02.
Article in English | MEDLINE | ID: mdl-34949811

ABSTRACT

The last three decades have brought a revolution in fluorescence microscopy. The development of new microscopes, fluorescent labels and analysis techniques has pushed the frontiers of biological imaging forward, moving from fixed to live cells, from diffraction-limited to super-resolution imaging and from simple cell culture systems to experiments in vivo. The large and ever-evolving collection of tools can be daunting for biologists, who must invest substantial time and effort in adopting new technologies to answer their specific questions. This is particularly relevant when working with small-molecule fluorescent labels, where users must navigate the jargon, idiosyncrasies and caveats of chemistry. Here, we present an overview of chemical dyes used in biology and provide frank advice from a chemist's perspective.


Subject(s)
Biochemistry/methods , Fluorescent Dyes/chemistry , Amines/chemistry , Photobleaching , Sulfhydryl Compounds/chemistry , Ultraviolet Rays
5.
Genes Dev ; 31(17): 1795-1808, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28982762

ABSTRACT

Transcription factor (TF)-directed enhanceosome assembly constitutes a fundamental regulatory mechanism driving spatiotemporal gene expression programs during animal development. Despite decades of study, we know little about the dynamics or order of events animating TF assembly at cis-regulatory elements in living cells and the long-range molecular "dialog" between enhancers and promoters. Here, combining genetic, genomic, and imaging approaches, we characterize a complex long-range enhancer cluster governing Krüppel-like factor 4 (Klf4) expression in naïve pluripotency. Genome editing by CRISPR/Cas9 revealed that OCT4 and SOX2 safeguard an accessible chromatin neighborhood to assist the binding of other TFs/cofactors to the enhancer. Single-molecule live-cell imaging uncovered that two naïve pluripotency TFs, STAT3 and ESRRB, interrogate chromatin in a highly dynamic manner, in which SOX2 promotes ESRRB target search and chromatin-binding dynamics through a direct protein-tethering mechanism. Together, our results support a highly dynamic yet intrinsically ordered enhanceosome assembly to maintain the finely balanced transcription program underlying naïve pluripotency.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Kruppel-Like Transcription Factors/genetics , Pluripotent Stem Cells/physiology , Animals , Binding Sites , Chromatin/metabolism , Embryonic Stem Cells , Kruppel-Like Factor 4 , Mice , Octamer Transcription Factor-3/metabolism , Protein Binding , Receptors, Estrogen/metabolism , SOXB1 Transcription Factors/metabolism , STAT3 Transcription Factor/metabolism , Transcription Factors/metabolism
6.
Genes Dev ; 30(18): 2106-2118, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27798851

ABSTRACT

Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A "step-wise" preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB-promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II-TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions.


Subject(s)
Promoter Regions, Genetic/physiology , Protein Multimerization/physiology , Transcription Factors, TFII/metabolism , Transcriptional Activation/physiology , Cell Line, Tumor , Humans , Microscopy, Interference , Protein Binding , RNA Polymerase II/metabolism , Sequence Deletion , Time Factors
7.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256273

ABSTRACT

Hepatitis C virus (HCV) infection alters lysophosphatidylcholine (LPC) metabolism, enhancing viral infectivity and replication. Direct-acting antivirals (DAAs) effectively treat HCV and rapidly normalize serum cholesterol. In serum, LPC species are primarily albumin-bound but are also present in lipoprotein particles. This study aims to assess the impact of HCV eradication on serum LPC species levels in patients infected with HCV. Therefore, 12 different LPC species were measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the sera of 178 patients with chronic HCV infections at baseline, and in 176 of these patients after therapy with DAAs. All LPC species increased at 4 and 12 weeks post-initiation of DAA therapy. The serum profiles of the LPC species were similar before and after the viral cure. Patients with HCV and liver cirrhosis exhibited lower serum levels of all LPC species, except LPC 16:1, both before and after DAA treatment. Percentages of LPC 18:1 (relative to the total LPC level) were higher, and % LPC 22:5 and 22:6 were lower in cirrhotic compared to non-cirrhotic patients at baseline and at the end of therapy. LPC species levels inversely correlated with the model of end-stage liver disease score and directly with baseline and post-therapy albumin levels. Receiver operating characteristic curve analysis indicated an area under the curve of 0.773 and 0.720 for % LPC 18:1 (relative to total LPC levels) for classifying fibrosis at baseline and post-therapy, respectively. In summary, HCV elimination was found to increase all LPC species and elevated LPC 18:1 relative to total LPC levels may have pathological significance in HCV-related liver cirrhosis.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Hepacivirus , Antiviral Agents/therapeutic use , Lysophosphatidylcholines , Tandem Mass Spectrometry , Hepatitis C, Chronic/drug therapy , Hepatitis C/drug therapy , Albumins , Liver Cirrhosis/drug therapy
8.
J Am Chem Soc ; 145(42): 23000-23013, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37842926

ABSTRACT

Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone-zwitterion equilibrium constant (KL-Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure-activity relationships that govern KL-Z. We discovered that the auxochrome substituent strongly affects the lactone-zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure-activity relationships that will guide the design of future probes.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Microscopy, Fluorescence/methods , Lactones
9.
Eur J Immunol ; 52(4): 633-645, 2022 04.
Article in English | MEDLINE | ID: mdl-34914098

ABSTRACT

Defective T-cell functions play a role in the persistence of HCV infection. Activated T cells express CD137, which costimulates antivirus T-cell responses, and this activity is antagonized by soluble CD137 (sCD137). Here, we show that in sera of 81 patients with chronic HCV, sCD137 levels did not correlate with measures of viral infection, and did not decline after virus eradication using direct-acting antivirals. Thus, serum sCD137 was similar in patients infected with HCV and in uninfected controls. Of note, in HCV patients with liver cirrhosis and patients with mostly alcohol-associated liver cirrhosis, sCD137 was increased. A negative association of sCD137 and albumin existed in both cohorts. sCD137 concentrations were similar in hepatic and portal vein blood excluding the liver as the origin of higher levels. Recombinant sCD137 reduced Th1 and Th2 but not Th17 cell polarization in vitro, and accordingly lowered IFN-γ, TNF, and IL-13 in cell media. Serum sCD137 is associated with inflammatory states, and positively correlated with serum TNF in cirrhotic HCV patients following virus eradication. Our study argues against a role of sCD137 in HCV infection and suggests a function of sCD137 in liver cirrhosis, which yet has to be defined.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Antiviral Agents , Biomarkers , Hepacivirus , Hepatitis C/complications , Humans , Liver Cirrhosis/etiology
10.
Nat Methods ; 17(8): 815-821, 2020 08.
Article in English | MEDLINE | ID: mdl-32719532

ABSTRACT

Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups. This strategy yields red-shifted 'Janelia Fluor' (JF) dyes useful for biological imaging experiments in cells and in vivo.


Subject(s)
Fluorescent Dyes/chemistry , Rhodamines/chemistry , Cell Line, Tumor , Humans , Infrared Rays , Microscopy, Fluorescence/methods , Molecular Structure
11.
Nat Methods ; 17(2): 225-231, 2020 02.
Article in English | MEDLINE | ID: mdl-31907447

ABSTRACT

Combining the molecular specificity of fluorescent probes with three-dimensional imaging at nanoscale resolution is critical for investigating the spatial organization and interactions of cellular organelles and protein complexes. We present a 4Pi single-molecule switching super-resolution microscope that enables ratiometric multicolor imaging of mammalian cells at 5-10-nm localization precision in three dimensions using 'salvaged fluorescence'. Imaging two or three fluorophores simultaneously, we show fluorescence images that resolve the highly convoluted Golgi apparatus and the close contacts between the endoplasmic reticulum and the plasma membrane, structures that have traditionally been the imaging realm of electron microscopy. The salvaged fluorescence approach is equally applicable in most single-objective microscopes.


Subject(s)
Optical Imaging , Subcellular Fractions/metabolism , Animals , Humans , Organelles/metabolism
12.
Int J Mol Sci ; 24(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37176109

ABSTRACT

Hepatitis C virus (HCV) replication depends on cellular sphingomyelin (SM), but serum SM composition in chronic HCV infection has been hardly analyzed. In this work, 18 SM species could be quantified in the serum of 178 patients with chronic HCV infection before therapy with direct-acting antivirals (DAAs) and 12 weeks later, when therapy was completed. Six SM species were higher in the serum of females than males before therapy and nine at the end of therapy; thus, sex-specific analysis was performed. Type 2 diabetes was associated with lower serum levels of SM 36:2;O2 and 38:2;O2 in men. Serum SM species did not correlate with the viral load in both sexes. Of note, three SM species were lower in males infected with HCV genotype 3 in comparison to genotype 1 infection. These SM species normalized after viral cure. SM 38:1;O2, 40:1;O2, 41:1;O2, and 42:1;O2 (and, thus, total SM levels) were higher in the serum of both sexes at the end of therapy. In males, SM 39:1;O2 was induced in addition, and higher levels of all of these SM species were already detected at 4 weeks after therapy has been started. Serum lipids are related to liver disease severity, and in females 15 serum SM species were low in patients with liver cirrhosis before initiation of and after treatment with DAAs. The serum SM species did not correlate with the model of end-stage liver disease (MELD) score in the cirrhosis and the non-cirrhosis subgroups in females. In HCV-infected male patients, nine SM species were lower in the serum of patients with cirrhosis before DAA treatment and eleven at the end of the study. Most of the SM species showed strong negative correlations with the MELD score in the male cirrhosis patients before DAA treatment and at the end of therapy. Associations of SM species with the MELD score were not detected in the non-cirrhosis male subgroup. In summary, the current analysis identified sex-specific differences in the serum levels of SM species in HCV infection, in liver cirrhosis, and during DAA therapy. Correlations of SM species with the MELD score in male but not in female patients indicate a much closer association between SM metabolism and liver function in male patients.


Subject(s)
Diabetes Mellitus, Type 2 , End Stage Liver Disease , Hepatitis C, Chronic , Hepatitis C , Humans , Male , Female , Hepacivirus/genetics , Antiviral Agents , Sphingomyelins , Hepatitis C, Chronic/complications , Diabetes Mellitus, Type 2/drug therapy , Hepatitis C/drug therapy , Hepatitis C/complications , Liver Cirrhosis/drug therapy
13.
Lipids Health Dis ; 21(1): 106, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36280840

ABSTRACT

BACKGROUND: Hepatitis C virus (HCV) infection is associated with serum lipid abnormalities, which partly normalize following direct-acting antiviral (DAA) therapy. Here, associations of serum triglycerides (TGs) with viral genotype and markers of liver disease severity were evaluated in patients with chronic HCV.  METHODS: The study included the serum of 177 patients with chronic HCV. TGs were quantified by flow injection analysis Fourier transform mass spectrometry. Laboratory values and noninvasive scores for liver fibrosis assessment were determined. The nonparametric Kruskal‒Wallis test, one-way ANOVA, multiple linear regression and Student's t test were used as appropriate. P values were adjusted for multiple comparisons. RESULTS: HCV-infected women had lower serum TGs than men, and thus, a sex-specific analysis was performed. None of the 46 TG species analyzed differed in the serum of female patients with and without liver cirrhosis. In contrast, in the serum of male patients with liver cirrhosis, TGs with 53, 56 and 58 carbon atoms and three to eight double bonds were diminished. These polyunsaturated TGs were also low in males with a high fibrosis-4 score. TGs with 7 or 8 double bonds negatively correlated with the model of end-stage liver disease score in males. In addition, TGs with 49, 51 and 53 carbon atoms were reduced in male patients infected with genotype 3a in comparison to genotype 1a. TGs with 56 carbon atoms were lower in genotype 3a-infected males than in genotype 1b-infected males. TGs did not differ in females by genotype. Genotype 3-related changes disappeared at the end of therapy with DAAs. Overall, the levels of serum TGs did not change during DAA therapy in either sex. Consequently, the serum TGs of males with liver cirrhosis were lower than those of males without cirrhosis at the end of therapy. Such a difference was not apparent in females. CONCLUSIONS: The decline in TGs observed only in male patients with liver cirrhosis and male patients infected with genotype 3 illustrates sex-specific changes in lipid metabolism in chronic HCV.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Female , Humans , Male , Hepacivirus/genetics , Antiviral Agents/therapeutic use , Hepatitis C, Chronic/drug therapy , Triglycerides , Liver Cirrhosis/complications , Carbon/therapeutic use
14.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077197

ABSTRACT

Hepatitis C virus (HCV) infection affects ceramide metabolism, and, here, we have evaluated associations of eight serum ceramide species with viral load, viral genotype, and disease markers in 178 patients with chronic HCV. In this cohort, ceramide d18:1;O2/16:0 was higher in the serum of the 20 diabetic patients compared to the patients without this complication. Moreover, ceramide d18:1;O2/24:0 was negatively correlated with age. Of note, all but ceramide d18:1;O2/16:0 and 26:0 were diminished in the serum of patients with liver cirrhosis and, with the exception of ceramide d18:1;O2/16:0, were negatively correlated with the model for end-stage liver disease (MELD) score. Most of the serum ceramides are carried in low-density lipoprotein (LDL), which rises following effective direct-acting antiviral (DAA) therapy. Ceramide d18:1;O2/24:0 recovered in parallel with LDL, whereas ceramide d18:1;O2/18:0 declined. Genotype-3-infected patients had the lowest ceramide levels, which were comparable to other genotypes after DAA treatment. Notably, ceramide d18:1;O2/23:0 and 24:0 were negatively correlated with the MELD score in patients with liver cirrhosis at the end of DAA therapy. Long-chain (LC) ceramides show adverse effects, whereas very-long-chain (VL) species have protective functions in the liver. The ratio of VL/LC ceramides was higher in non-cirrhosis patients than cirrhosis patients and further increased at the end of therapy in this subgroup. In summary, our study shows that serum ceramide levels are related to liver cirrhosis and viral genotype. Whether the more favorable serum ceramide profile in non-cirrhosis patients, before and after DAA therapy, is of pathophysiological importance needs further investigation.


Subject(s)
End Stage Liver Disease , Hepatitis C, Chronic , Antiviral Agents/therapeutic use , Ceramides , End Stage Liver Disease/complications , Genotype , Hepacivirus/genetics , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Humans , Liver Cirrhosis/etiology , Severity of Illness Index
15.
J Am Chem Soc ; 143(28): 10793-10803, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34250803

ABSTRACT

Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.


Subject(s)
Cyclooctanes/chemistry , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Silicon/chemistry , Tetrazoles/chemical synthesis , Animals , Catalysis , Humans , Infrared Rays , Mice , Molecular Structure , Photochemical Processes , Tetrazoles/chemistry , Tumor Cells, Cultured
16.
Proc Natl Acad Sci U S A ; 115(2): 343-348, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29284749

ABSTRACT

Our ability to unambiguously image and track individual molecules in live cells is limited by packing of multiple copies of labeled molecules within the resolution limit. Here we devise a universal genetic strategy to precisely control copy number of fluorescently labeled molecules in a cell. This system has a dynamic range of ∼10,000-fold, enabling sparse labeling of proteins expressed at different abundance levels. Combined with photostable labels, this system extends the duration of automated single-molecule tracking by two orders of magnitude. We demonstrate long-term imaging of synaptic vesicle dynamics in cultured neurons as well as in intact zebrafish. We found axon initial segment utilizes a "waterfall" mechanism gating synaptic vesicle transport polarity by promoting anterograde transport processivity. Long-time observation also reveals that transcription factor hops between clustered binding sites in spatially restricted subnuclear regions, suggesting that topological structures in the nucleus shape local gene activities by a sequestering mechanism. This strategy thus greatly expands the spatiotemporal length scales of live-cell single-molecule measurements, enabling new experiments to quantitatively understand complex control of molecular dynamics in vivo.


Subject(s)
Cell Tracking/methods , Neurons/metabolism , Synaptic Vesicles/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , Cell Line, Tumor , Cells, Cultured , Humans , Kinetics , Neurons/cytology , Time-Lapse Imaging/methods , Zebrafish
17.
Nat Methods ; 14(10): 987-994, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28869757

ABSTRACT

Pushing the frontier of fluorescence microscopy requires the design of enhanced fluorophores with finely tuned properties. We recently discovered that incorporation of four-membered azetidine rings into classic fluorophore structures elicits substantial increases in brightness and photostability, resulting in the Janelia Fluor (JF) series of dyes. We refined and extended this strategy, finding that incorporation of 3-substituted azetidine groups allows rational tuning of the spectral and chemical properties of rhodamine dyes with unprecedented precision. This strategy allowed us to establish principles for fine-tuning the properties of fluorophores and to develop a palette of new fluorescent and fluorogenic labels with excitation ranging from blue to the far-red. Our results demonstrate the versatility of these new dyes in cells, tissues and animals.


Subject(s)
Coloring Agents/chemistry , Image Processing, Computer-Assisted/methods , Staining and Labeling/methods , Animals , Brain/anatomy & histology , Cell Line , Drosophila , Larva/cytology , Mice , Microscopy, Fluorescence , Photochemical Processes
18.
Nano Lett ; 19(1): 500-505, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30525682

ABSTRACT

We demonstrate stimulated emission depletion (STED) microscopy of whole bacterial and eukaryotic cells using fluorogenic labels that reversibly bind to their target structure. A constant exchange of labels guarantees the removal of photobleached fluorophores and their replacement by intact fluorophores, thereby circumventing bleaching-related limitations of STED super-resolution imaging. We achieve a constant labeling density and demonstrate a fluorescence signal for long and theoretically unlimited acquisition times. Using this concept, we demonstrate whole-cell, 3D, multicolor, and live-cell STED microscopy.

19.
Nat Methods ; 13(4): 359-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950745

ABSTRACT

Extending three-dimensional (3D) single-molecule localization microscopy away from the coverslip and into thicker specimens will greatly broaden its biological utility. However, because of the limitations of both conventional imaging modalities and conventional labeling techniques, it is a challenge to localize molecules in three dimensions with high precision in such samples while simultaneously achieving the labeling densities required for high resolution of densely crowded structures. Here we combined lattice light-sheet microscopy with newly developed, freely diffusing, cell-permeable chemical probes with targeted affinity for DNA, intracellular membranes or the plasma membrane. We used this combination to perform high-localization precision, ultrahigh-labeling density, multicolor localization microscopy in samples up to 20 µm thick, including dividing cells and the neuromast organ of a zebrafish embryo. We also demonstrate super-resolution correlative imaging with protein-specific photoactivable fluorophores, providing a mutually compatible, single-platform alternative to correlative light-electron microscopy over large volumes.


Subject(s)
Cell Membrane/ultrastructure , Embryo, Nonmammalian/ultrastructure , Microscopy, Electron/methods , Microscopy, Fluorescence/methods , Mitochondria/ultrastructure , Animals , COS Cells , Chlorocebus aethiops , Fluorescent Dyes , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , LLC-PK1 Cells , Swine , Zebrafish/embryology
20.
Nat Methods ; 13(12): 985-988, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27776112

ABSTRACT

Small-molecule fluorophores are important tools for advanced imaging experiments. We previously reported a general method to improve small, cell-permeable fluorophores which resulted in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of these dyes by synthesizing photoactivatable derivatives that are compatible with live-cell labeling strategies. Once activated, these derived compounds retain the superior brightness and photostability of the JF dyes, enabling improved single-particle tracking and facile localization microscopy experiments.


Subject(s)
Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Photochemical Processes , Single Molecule Imaging/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Animals , COS Cells , Cell Culture Techniques , Cell Line, Tumor , Cell Membrane Permeability , Embryonic Stem Cells , Fluorescent Dyes/metabolism , Fluorescent Dyes/radiation effects , Humans , Ligands , Light , Mice , Microscopy, Fluorescence , Molecular Structure , Photochemistry/methods , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/radiation effects , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL