Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808900

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein capable of selectively inducing apoptosis in cancer cells by binding to its cognate receptors. Here, we examined the anticancer efficacy of a recently developed chimeric AD-O51.4 protein, a TRAIL fused to the VEGFA-originating peptide. We tested AD-O51.4 protein activity against human colorectal cancer (CRC) models and investigated the resistance mechanism in the non-responsive CRC models. The quantitative comparison of apoptotic activity between AD-O51.4 and the native TRAIL in nine human colorectal cancer cell lines revealed dose-dependent toxicity in seven of them; the immunofluorescence-captured receptor abundance correlated with the extent of apoptosis. AD-O51.4 reduced the growth of CRC patient-derived xenografts (PDXs) with good efficacy. Cell lines that acquired AD-O51.4 resistance showed a significant decrease in surface TRAIL receptor expression and apoptosis-related proteins, including Caspase-8, HSP60, and p53. These results demonstrate the effectiveness of AD-O51.4 protein in CRC preclinical models and identify the potential mechanism underlying acquired resistance. Progression of AD-O51.4 to clinical trials is expected.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Recombinant Fusion Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/chemistry , TNF-Related Apoptosis-Inducing Ligand/genetics , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/genetics , Xenograft Model Antitumor Assays
2.
Am J Cancer Res ; 12(10): 4751-4763, 2022.
Article in English | MEDLINE | ID: mdl-36381331

ABSTRACT

Bromodomain Adjacent to Zinc Finger Domain 1B (BAZ1B) is involved in multiple nuclear processes, and its role in tumorigenesis is emerging. However, the function of BAZ1B in colorectal cancer (CRC) remains largely unexplored. High-density tissue microarrays comprising 100 pairs of matched normal colon and treatment-naïve CRC samples were analyzed by immunohistochemistry with an anti-BAZ1B antibody. The HCT116 and SW480 CRC cell lines were used for overexpression and small hairpin RNA-mediated BAZ1B knockdown models, respectively. Both cell lines were xenografted to immunodeficient NU/J mice to assess tumor burden. The molecular consequences of alterations of BAZ1B expression were assessed by RNA-Seq of xenografts and functional analyses using the Reactome database. Immunohistochemical analysis of BAZ1B showed that BAZ1B staining intensity was higher in 93 tumor specimens and significantly correlated with tumor size (P = 0.03), but not with the presence of KRAS mutation. BAZ1B overexpression significantly increased and its knockdown inhibited the proliferation of HCT116 and SW480 cell lines, respectively. These findings were reproduced when both cell lines were grown as xenografts. RNA-Seq of HCT116 and SW480 xenografts identified 2046 and 99 differentially expressed genes (DEGs) (adjusted P ≤ 0.05), respectively. Functional annotation of DEGs identified already established as well as new molecular processes dependent on BAZ1B protein expression. In conclusion, BAZ1B is overexpressed in CRC tissue and contributes to CRC cell proliferation in vitro and in vivo. The data support the emerging oncogenic role of BAZ1B in cancerogenesis including in CRC.

3.
EMBO Mol Med ; 12(2): e10812, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31930723

ABSTRACT

Somatic copy number alterations play a critical role in oncogenesis. Loss of chromosomal regions containing tumor suppressors can lead to collateral deletion of passenger genes. This can be exploited therapeutically if synthetic lethal partners of such passenger genes are known and represent druggable targets. Here, we report that VPS4B gene, encoding an ATPase involved in ESCRT-dependent membrane remodeling, is such a passenger gene frequently deleted in many cancer types, notably in colorectal cancer (CRC). We observed downregulation of VPS4B mRNA and protein levels from CRC patient samples. We identified VPS4A paralog as a synthetic lethal interactor for VPS4B in vitro and in mouse xenografts. Depleting both proteins profoundly altered the cellular transcriptome and induced cell death accompanied by the release of immunomodulatory molecules that mediate inflammatory and anti-tumor responses. Our results identify a pair of novel druggable targets for personalized oncology and provide a rationale to develop VPS4 inhibitors for precision therapy of VPS4B-deficient cancers.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Colorectal Neoplasms , Endosomal Sorting Complexes Required for Transport/genetics , Synthetic Lethal Mutations , Vacuolar Proton-Translocating ATPases/genetics , Animals , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans , Mice , Neoplasm Transplantation
4.
Cancers (Basel) ; 12(3)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138178

ABSTRACT

Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo.

5.
Biomed Res Int ; 2018: 2954208, 2018.
Article in English | MEDLINE | ID: mdl-30662905

ABSTRACT

Colorectal cancer (CRC) is the second most common cancer in Europe and a leading cause of death worldwide. Patient-derived xenograft (PDX) models maintain complex intratumoral biology and heterogeneity and therefore remain the platform of choice for translational drug discovery. In this study, we implanted 37 primary CRC tumors and five CRC cell lines into NU/J mice to develop xenograft models. Primary tumors and established xenografts were histologically assessed and surveyed for genetic variants and gene expression using a panel of 409 cancer-related genes and RNA-seq, respectively. More than half of CRC tumors (20 out of 37, 54%) developed into a PDX. Histological assessment confirmed that PDX grading, stromal components, inflammation, and budding were consistent with those of the primary tumors. DNA sequencing identified an average of 0.14 variants per gene per sample. The percentage of mutated variants in PDXs increased with successive passages, indicating a decrease in clonal heterogeneity. Gene Ontology analyses of 4180 differentially expressed transcripts (adj. p value < 0.05) revealed overrepresentation of genes involved in cell division and catabolic processes among the transcripts upregulated in PDXs; downregulated transcripts were associated with GO terms related to extracellular matrix organization, immune responses, and angiogenesis. Neither a transcriptome-based consensus molecular subtype (CMS) classifier nor three other predictors reliably matched PDX molecular subtypes with those of the primary tumors. In sum, both genetic and transcriptomic profiles differed between donor tumors and PDXs, likely as a consequence of subclonal evolution at the early phase of xenograft development, making molecular stratification of PDXs challenging.


Subject(s)
Colonic Neoplasms/genetics , Genetic Variation/genetics , Animals , Cell Line, Tumor , Colonic Neoplasms/pathology , Disease Models, Animal , Down-Regulation/genetics , Gene Expression/genetics , Heterografts , Humans , Mice , Mice, Nude , Transcriptome/genetics , Up-Regulation/genetics , Xenograft Model Antitumor Assays/methods
6.
Oncotarget ; 8(20): 33779-33795, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28422713

ABSTRACT

Inhibition of oncogenic transcriptional programs is a promising therapeutic strategy. A substituted tricyclic benzimidazole, SEL120-34A, is a novel inhibitor of Cyclin-dependent kinase 8 (CDK8), which regulates transcription by associating with the Mediator complex. X-ray crystallography has shown SEL120-34A to be a type I inhibitor forming halogen bonds with the protein's hinge region and hydrophobic complementarities within its front pocket. SEL120-34A inhibits phosphorylation of STAT1 S727 and STAT5 S726 in cancer cells in vitro. Consistently, regulation of STATs- and NUP98-HOXA9- dependent transcription has been observed as a dominant mechanism of action in vivo. Treatment with the compound resulted in a differential efficacy on AML cells with elevated STAT5 S726 levels and stem cell characteristics. In contrast, resistant cells were negative for activated STAT5 and revealed lineage commitment. In vivo efficacy in xenotransplanted AML models correlated with significant repression of STAT5 S726. Favorable pharmacokinetics, confirmed safety and in vivo efficacy provide a rationale for the further clinical development of SEL120-34A as a personalized therapeutic approach in AML.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Protein Interaction Domains and Motifs/drug effects , Protein Kinase Inhibitors/pharmacology , STAT1 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cyclin-Dependent Kinase 8/chemistry , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Leukemic/drug effects , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Models, Molecular , Molecular Conformation , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemistry , STAT1 Transcription Factor/chemistry , STAT5 Transcription Factor/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL