Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters

Publication year range
1.
Geophys Res Lett ; 49(11): e2021GL097390, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35865009

ABSTRACT

We present 14 simultaneous Chandra X-ray Observatory (CXO)-Hubble Space Telescope (HST) observations of Jupiter's Northern X-ray and ultraviolet (UV) aurorae from 2016 to 2019. Despite the variety of dynamic UV and X-ray auroral structures, one region is conspicuous by its persistent absence of emission: the dark polar region (DPR). Previous HST observations have shown that very little UV emission is produced by the DPR. We find that the DPR also produces very few X-ray photons. For all 14 observations, the low level of X-ray emission from the DPR is consistent (within 2-standard deviations) with scattered solar emission and/or photons spread by Chandra's Point Spread Function from known X-ray-bright regions. We therefore conclude that for these 14 observations the DPR produced no statistically significant detectable X-ray signature.

2.
Geophys Res Lett ; 44(15): 7668-7675, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28989207

ABSTRACT

Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h.

3.
Geophys Res Lett ; 41(5): 1382-1388, 2014 Mar 16.
Article in English | MEDLINE | ID: mdl-25821276

ABSTRACT

We report on the first analysis of magnetospheric cusp observations at Saturn by multiple in situ instruments onboard the Cassini spacecraft. Using this we infer the process of reconnection was occurring at Saturn's magnetopause. This agrees with remote observations that showed the associated auroral signatures of reconnection. Cassini crossed the northern cusp around noon local time along a poleward trajectory. The spacecraft observed ion energy-latitude dispersions-a characteristic signature of the terrestrial cusp. This ion dispersion is "stepped," which shows that the reconnection is pulsed. The ion energy-pitch angle dispersions suggest that the field-aligned distance from the cusp to the reconnection site varies between ∼27 and 51 RS . An intensification of lower frequencies of the Saturn kilometric radiation emissions suggests the prior arrival of a solar wind shock front, compressing the magnetosphere and providing more favorable conditions for magnetopause reconnection. KEY POINTS: We observe evidence for reconnection in the cusp plasma at SaturnWe present evidence that the reconnection process can be pulsed at SaturnSaturn's cusp shows similar characteristics to the terrestrial cusp.

4.
Geophys Res Lett ; 41(10): 3323-3330, 2014 May 28.
Article in English | MEDLINE | ID: mdl-26074636

ABSTRACT

We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

5.
Nature ; 433(7027): 717-9, 2005 Feb 17.
Article in English | MEDLINE | ID: mdl-15716945

ABSTRACT

It has often been stated that Saturn's magnetosphere and aurorae are intermediate between those of Earth, where the dominant processes are solar wind driven, and those of Jupiter, where processes are driven by a large source of internal plasma. But this view is based on information about Saturn that is far inferior to what is now available. Here we report ultraviolet images of Saturn, which, when combined with simultaneous Cassini measurements of the solar wind and Saturn kilometric radio emission, demonstrate that its aurorae differ morphologically from those of both Earth and Jupiter. Saturn's auroral emissions vary slowly; some features appear in partial corotation whereas others are fixed to the solar wind direction; the auroral oval shifts quickly in latitude; and the aurora is often not centred on the magnetic pole nor closed on itself. In response to a large increase in solar wind dynamic pressure Saturn's aurora brightened dramatically, the brightest auroral emissions moved to higher latitudes, and the dawn side polar regions were filled with intense emissions. The brightening is reminiscent of terrestrial aurorae, but the other two variations are not. Rather than being intermediate between the Earth and Jupiter, Saturn's auroral emissions behave fundamentally differently from those at the other planets.

6.
Nature ; 433(7027): 722-5, 2005 Feb 17.
Article in English | MEDLINE | ID: mdl-15716947

ABSTRACT

Saturn is a source of intense kilometre-wavelength radio emissions that are believed to be associated with its polar aurorae, and which provide an important remote diagnostic of its magnetospheric activity. Previous observations implied that the radio emission originated in the polar regions, and indicated a strong correlation with solar wind dynamic pressure. The radio source also appeared to be fixed near local noon and at the latitude of the ultraviolet aurora. There have, however, been no observations relating the radio emissions to detailed auroral structures. Here we report measurements of the radio emissions, which, along with high-resolution images of Saturn's ultraviolet auroral emissions, suggest that although there are differences in the global morphology of the aurorae, Saturn's radio emissions exhibit an Earth-like correspondence between bright auroral features and the radio emissions. This demonstrates the universality of the mechanism that results in emissions near the electron cyclotron frequency narrowly beamed at large angles to the magnetic field.

7.
Nature ; 433(7027): 720-2, 2005 Feb 17.
Article in English | MEDLINE | ID: mdl-15716946

ABSTRACT

The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.

8.
Science ; 266(5191): 1675-8, 1994 Dec 09.
Article in English | MEDLINE | ID: mdl-17775626

ABSTRACT

Two sets of ultraviolet images of the Jovian north aurora were obtained with the Faint Object Camera on board the Hubble Space Telescope. The first series shows an intense discrete arc in near corotation with the planet. The maximum apparent molecular hydrogen emission rate corresponds to an electron precipitation of approximately 1 watt per square meter, which is about 30,000 times larger than the solar heating by extreme ultraviolet radiation. Such a particle heating rate of the auroral upper atmosphere of Jupiter should cause a large transient temperature increase and generate strong thermospheric winds. Twenty hours after initial observation, the discrete arc had decreased in brightness by more than one order of magnitude. The time scale and magnitude of the change in the ultraviolet aurora leads us to suggest that the discrete Jovian auroral precipitation is related to large-scale variations in the current system, as is the case for Earth's discrete aurorae.

9.
Science ; 361(6404): 774-777, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29976795

ABSTRACT

Jupiter's aurorae are produced in its upper atmosphere when incoming high-energy electrons precipitate along the planet's magnetic field lines. A northern and a southern main auroral oval are visible, surrounded by small emission features associated with the Galilean moons. We present infrared observations, obtained with the Juno spacecraft, showing that in the case of Io, this emission exhibits a swirling pattern that is similar in appearance to a von Kármán vortex street. Well downstream of the main auroral spots, the extended tail is split in two. Both of Ganymede's footprints also appear as a pair of emission features, which may provide a remote measure of Ganymede's magnetosphere. These features suggest that the magnetohydrodynamic interaction between Jupiter and its moon is more complex than previously anticipated.

10.
Science ; 356(6340): 826-832, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28546207

ABSTRACT

The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.

11.
Nature ; 415(6875): 1003-5, 2002 Feb 28.
Article in English | MEDLINE | ID: mdl-11875562

ABSTRACT

Energetic electrons and ions that are trapped in Earth's magnetosphere can suddenly be accelerated towards the planet. Some dynamic features of Earth's aurora (the northern and southern lights) are created by the fraction of these injected particles that travels along magnetic field lines and hits the upper atmosphere. Jupiter's aurora appears similar to Earth's in some respects; both appear as large ovals circling the poles and both show transient events. But the magnetospheres of Jupiter and Earth are so different---particularly in the way they are powered---that it is not known whether the magnetospheric drivers of Earth's aurora also cause them on Jupiter. Here we show a direct relationship between Earth-like injections of electrons in Jupiter's magnetosphere and a transient auroral feature in Jupiter's polar region. This relationship is remarkably similar to what happens at Earth, and therefore suggests that despite the large differences between planetary magnetospheres, some processes that generate aurorae are the same throughout the Solar System.

12.
Nature ; 415(6875): 997-1000, 2002 Feb 28.
Article in English | MEDLINE | ID: mdl-11875560

ABSTRACT

Io leaves a magnetic footprint on Jupiter's upper atmosphere that appears as a spot of ultraviolet emission that remains fixed underneath Io as Jupiter rotates. The specific physical mechanisms responsible for generating those emissions are not well understood, but in general the spot seems to arise because of an electromagnetic interaction between Jupiter's magnetic field and the plasma surrounding Io, driving currents of around 1 million amperes down through Jupiter's ionosphere. The other galilean satellites may also leave footprints, and the presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter. Here we report persistent, faint, far-ultraviolet emission from the jovian footprints of Ganymede and Europa. We also show that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically; the emission persists for several hours downstream. We infer from these data that Ganymede and Europa have persistent interactions with Jupiter's magnetic field despite their thin atmospheres.

13.
Nature ; 415(6875): 1000-3, 2002 Feb 28.
Article in English | MEDLINE | ID: mdl-11875561

ABSTRACT

Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions. Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.

SELECTION OF CITATIONS
SEARCH DETAIL