ABSTRACT
OBJECTIVE: To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). STUDY DESIGN: One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. RESULTS: Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, ß = -0.50). SES was independently associated with cognitive outcome (P < .001, ß = 0.26), and LOS with motor outcome (P < .001, ß = -0.35). CONCLUSION: Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.
Subject(s)
Brain Injuries , Heart Defects, Congenital , Infant , Humans , Child, Preschool , Brain/pathology , Brain Injuries/etiology , Brain Injuries/pathology , Heart Defects, Congenital/surgery , Heart Defects, Congenital/complications , Magnetic Resonance Imaging , Risk FactorsABSTRACT
AIMS: Little is known about the population pharmacokinetics (PPK) of vancomycin in neonates with perinatal asphyxia treated with therapeutic hypothermia (TH). We aimed to describe the PPK of vancomycin and propose an initial dosing regimen for the first 48 h of treatment with pharmacokinetic/pharmacodynamic target attainment. METHODS: Neonates with perinatal asphyxia treated with TH were included from birth until Day 6 in a multicentre prospective cohort study. A vancomycin PPK model was constructed using nonlinear mixed-effects modelling. The model was used to evaluate published dosing guidelines with regard to pharmacokinetic/pharmacodynamic target attainment. The area under the curve/minimal inhibitory concentration ratio of 400-600 mg*h/L was used as target range. RESULTS: Sixteen patients received vancomycin (median gestational age: 41 [range: 38-42] weeks, postnatal age: 4.4 [2.5-5.5] days, birth weight: 3.5 [2.3-4.7] kg), and 112 vancomycin plasma concentrations were available. Most samples (79%) were collected during the rewarming and normothermic phase, as vancomycin was rarely initiated during the hypothermic phase due to its nonempirical use. An allometrically scaled 1-compartment model showed the best fit. Vancomycin clearance was 0.17 L/h, lower than literature values for term neonates of 3.5 kg without perinatal asphyxia (range: 0.20-0.32 L/h). Volume of distribution was similar. Published dosing regimens led to overexposure within 24 h of treatment. A loading dose of 10 mg/kg followed by 24 mg/kg/day in 4 doses resulted in target attainment. CONCLUSION: Results of this study suggest that vancomycin clearance is reduced in term neonates with perinatal asphyxia treated with TH. Lower dosing regimens should be considered followed by model-informed precision dosing.
Subject(s)
Anti-Bacterial Agents , Asphyxia Neonatorum , Hypothermia, Induced , Models, Biological , Vancomycin , Humans , Infant, Newborn , Vancomycin/pharmacokinetics , Vancomycin/administration & dosage , Hypothermia, Induced/methods , Asphyxia Neonatorum/therapy , Asphyxia Neonatorum/drug therapy , Prospective Studies , Male , Female , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Area Under Curve , Gestational Age , Dose-Response Relationship, DrugABSTRACT
BACKGROUND: Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH. METHODS: The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed. RESULTS: The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters. CONCLUSIONS: The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.
Subject(s)
Anti-Bacterial Agents , Asphyxia Neonatorum , Gentamicins , Hypothermia, Induced , Models, Biological , Humans , Gentamicins/pharmacokinetics , Gentamicins/therapeutic use , Infant, Newborn , Hypothermia, Induced/methods , Asphyxia Neonatorum/therapy , Prospective Studies , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Male , Female , Gestational AgeABSTRACT
AIM: To construct birthweight charts customised for maternal height and evaluate the effect of customization on SGA and LGA classification. METHODS: Data were extracted (n = 21 350) from the MiCaS project in the Netherlands (2012-2020). We constructed the MiCaS-birthweight chart customised for maternal height using Hadlock's method. We defined seven 5-centimetre height categories from 153 to 157 cm until 183-187 cm and calculated SGA and LGA prevalences for each category, using MiCaS and current Dutch birthweight charts. RESULTS: The MiCaS-chart showed substantially higher birthweight values between identical percentiles with increasing maternal height. In the Dutch birthweight chart, not customised for maternal height, the prevalence of SGA (
Subject(s)
Birth Weight , Body Height , Infant, Small for Gestational Age , Humans , Infant, Newborn , Female , Netherlands , Growth Charts , Male , Fetal Macrosomia/epidemiology , AdultABSTRACT
Ceftazidime is an antibiotic commonly used to treat bacterial infections in term neonates undergoing controlled therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy after perinatal asphyxia. We aimed to describe the population pharmacokinetics (PK) of ceftazidime in asphyxiated neonates during hypothermia, rewarming, and normothermia and propose a population-based rational dosing regimen with optimal PK/pharmacodynamic (PD) target attainment. Data were collected in the PharmaCool prospective observational multicenter study. A population PK model was constructed, and the probability of target attainment (PTA) was assessed during all phases of controlled TH using targets of 100% of the time that the concentration in the blood exceeds the MIC (T>MIC) (for efficacy purposes and 100% T>4×MIC and 100% T>5×MIC to prevent resistance). A total of 35 patients with 338 ceftazidime concentrations were included. An allometrically scaled one-compartment model with postnatal age and body temperature as covariates on clearance was constructed. For a typical patient receiving the current dose of 100 mg/kg of body weight/day in 2 doses and assuming a worst-case MIC of 8 mg/L for Pseudomonas aeruginosa, the PTA was 99.7% for 100% T>MIC during hypothermia (33.7°C; postnatal age [PNA] of 2 days). The PTA decreased to 87.7% for 100% T>MIC during normothermia (36.7°C; PNA of 5 days). Therefore, a dosing regimen of 100 mg/kg/day in 2 doses during hypothermia and rewarming and 150 mg/kg/day in 3 doses during the following normothermic phase is advised. Higher-dosing regimens (150 mg/kg/day in 3 doses during hypothermia and 200 mg/kg/day in 4 doses during normothermia) could be considered when achievements of 100% T>4×MIC and 100% T>5×MIC are desired.
Subject(s)
Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Infant, Newborn , Humans , Ceftazidime/pharmacology , Hypothermia/drug therapy , Anti-Bacterial Agents/pharmacologyABSTRACT
OBJECTIVE: To investigate the relation between duration of hemodynamically significant patent ductus arteriosus (PDA), cerebral oxygenation, magnetic resonance imaging-determined brain growth, and 2-year neurodevelopmental outcome in a cohort of infants born preterm whose duct was closed surgically. STUDY DESIGN: Infants born preterm at <30 weeks of gestational age who underwent surgical ductal closure between 2008 and 2018 (n = 106) were included in this observational study. Near infrared spectroscopy-monitored cerebral oxygen saturation during and up to 24 hours after ductal closure and a Bayley III developmental test at the corrected age of 2 years is the institutional standard of care for this patient group. Infants also had magnetic resonance imaging at term-equivalent age. RESULTS: In total, 90 infants fulfilled the inclusion criteria (median [range]: 25.9 weeks [24.0-28.9]; 856 g [540-1350]. Days of a PDA ranged from 1 to 41. Multivariable linear regression analysis showed that duration of a PDA negatively influenced cerebellar growth and motor and cognitive outcome at 2 years of corrected age. CONCLUSIONS: Prolonged duration of a PDA in this surgical cohort is associated with reduced cerebellar growth and suboptimal neurodevelopmental outcome.
Subject(s)
Ductus Arteriosus, Patent , Infant, Newborn , Infant , Humans , Child, Preschool , Ductus Arteriosus, Patent/surgery , Infant, Premature , Brain/diagnostic imaging , Gestational AgeABSTRACT
OBJECTIVE: To assess the evolution of neonatal brain injury noted on magnetic resonance imaging (MRI), develop a score to assess brain injury on 3-month MRI, and determine the association of 3-month MRI with neurodevelopmental outcome in neonatal encephalopathy (NE) following perinatal asphyxia. METHODS: This was a retrospective, single-center study including 63 infants with perinatal asphyxia and NE (n = 28 cooled) with cranial MRI <2 weeks and 2-4 months after birth. Both scans were assessed using biometrics, a validated injury score for neonatal MRI, and a new score for 3-month MRI, with a white matter (WM), deep gray matter (DGM), and cerebellum subscore. The evolution of brain lesions was assessed, and both scans were related to 18- to 24-month composite outcome. Adverse outcome included cerebral palsy, neurodevelopmental delay, hearing/visual impairment, and epilepsy. RESULTS: Neonatal DGM injury generally evolved into DGM atrophy and focal signal abnormalities, and WM/watershed injury evolved into WM and/or cortical atrophy. Although the neonatal total and DGM scores were associated with composite adverse outcomes, the 3-month DGM score (OR 1.5, 95% CI 1.2-2.0) and WM score (OR 1.1, 95% CI 1.0-1.3) also were associated with composite adverse outcomes (occurring in n = 23). The 3-month multivariable model (including the DGM and WM subscores) had higher positive (0.88 vs 0.83) but lower negative predictive value (0.83 vs 0.84) than neonatal MRI. Inter-rater agreement for the total, WM, and DGM 3-month score was 0.93, 0.86, and 0.59. CONCLUSIONS: In particular, DGM abnormalities on 3-month MRI, preceded by DGM abnormalities on the neonatal MRI, were associated with 18- to 24-month outcome, indicating the utility of 3-month MRI for treatment evaluation in neuroprotective trials. However, the clinical usefulness of 3-month MRI seems limited compared with neonatal MRI.
Subject(s)
Asphyxia Neonatorum , Brain Injuries , Infant, Newborn, Diseases , Infant, Newborn , Pregnancy , Female , Infant , Humans , Retrospective Studies , Asphyxia/complications , Magnetic Resonance Imaging/methods , Asphyxia Neonatorum/complications , Asphyxia Neonatorum/diagnostic imaging , Brain Injuries/pathology , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathologyABSTRACT
BACKGROUND AND AIMS: Perinatal arterial ischemic stroke (PAIS) often has lifelong neurodevelopmental consequences. We aimed to review early predictors (<4 months of age) of long-term outcome. METHODS: We carried out a systematic literature search (PubMed and Embase), and included articles describing term-born infants with PAIS that underwent a diagnostic procedure within four months of age, and had any reported outcome parameter ≥12 months of age. Two independent reviewers included studies and performed risk of bias analysis. RESULTS: We included 41 articles reporting on 1395 infants, whereof 1255 (90%) infants underwent follow-up at a median of 4 years. A meta-analysis was performed for the development of cerebral palsy (n = 23 studies); the best predictor was the qualitative or quantitative assessment of the corticospinal tracts on MRI, followed by standardized motor assessments. For long-term cognitive functioning, bedside techniques including (a)EEG and NIRS might be valuable. Injury to the optic radiation on DTI correctly predicted visual field defects. No predictors could be identified for behavior, language, and post-neonatal epilepsy. CONCLUSION: Corticospinal tract assessment on MRI and standardized motor assessments are best to predict cerebral palsy after PAIS. Future research should be focused on improving outcome prediction for non-motor outcomes. IMPACT: We present a systematic review of early predictors for various long-term outcome categories after perinatal arterial ischemic stroke (PAIS), including a meta-analysis for the outcome unilateral spastic cerebral palsy. Corticospinal tract assessment on MRI and standardized motor assessments are best to predict cerebral palsy after PAIS, while bedside techniques such as (a)EEG and NIRS might improve cognitive outcome prediction. Future research should be focused on improving outcome prediction for non-motor outcomes.
Subject(s)
Cerebral Palsy , Infant, Newborn, Diseases , Ischemic Stroke , Stroke , Infant, Newborn , Infant , Humans , Stroke/diagnosis , Cerebral Palsy/diagnosis , Magnetic Resonance ImagingABSTRACT
BACKGROUND: Kernicterus in the acute phase is difficult to diagnose. It depends on a high signal on T1 at the globus pallidum and subthalamic nucleus level. Unfortunately, these areas also show a relatively high signal on T1 in neonates as an expression of early myelination. Therefore, a less myelin-dependent sequence, like SWI, may be more sensitive to detecting damage in the globus pallidum area. CASE PRESENTATION: A term baby developed jaundice on day three following an uncomplicated pregnancy and delivery. Total bilirubin peaked at 542 µmol/L on day four. Phototherapy was started, and an exchange transfusion was performed. ABR showed absent responses on day 10. MRI on day eight demonstrated abnormal high signal globus pallidus on T1w, isointense on T2w, without diffusion restriction, and high signal on SWI at globus pallidal and subthalamus level and phase image at globus pallidal level. These findings were consistent with the challenging diagnosis of kernicterus. On follow-up, the infant presented with sensorineural hearing loss and had a work-up for cochlear implant surgery. At 3 months of age, the follow-up MR shows normalization of the T1 and SWI signals and a high signal on T2. CONCLUSIONS: SWI seems more sensitive to injury than the T1w and lacks the disadvantage of the T1w sequence, where early myelin confers a high signal.
Subject(s)
Brain Injuries , Kernicterus , Subthalamic Nucleus , Infant, Newborn , Infant , Humans , Kernicterus/complications , Kernicterus/diagnosis , Magnetic Resonance Imaging/methods , Globus Pallidus , Brain Injuries/complicationsABSTRACT
BACKGROUND: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. METHODS: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. RESULTS: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06-4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23-5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20-21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05-1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58-67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20-6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28-95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08-13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07-1.36]) also increased the risk of new cerebral sinus venous thrombosis. CONCLUSIONS: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors.
Subject(s)
Brain Injuries , Heart Defects, Congenital , Ischemic Stroke , Transposition of Great Vessels , Venous Thrombosis , Infant , Infant, Newborn , Female , Humans , Transposition of Great Vessels/surgery , Transposition of Great Vessels/complications , Transposition of Great Vessels/pathology , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/surgery , Heart Defects, Congenital/complications , Risk Factors , Brain/diagnostic imaging , Brain/pathology , Brain Injuries/pathology , Venous Thrombosis/complicationsABSTRACT
OBJECTIVE: To determine the incidence of hypoglycemia among infants with hypoxic-ischemic encephalopathy (HIE) who received therapeutic hypothermia, and to assess whether infants with hypoglycemia had more brain injury on magnetic resonance imaging (MRI) or differences in neurodevelopmental outcome. STUDY DESIGN: Single-center, retrospective cohort study including infants cooled for HIE. Hypoglycemia (blood glucose <36.0 mg/dL <2 hours and <46.8 mg/dL ≥2 hours after birth) was analyzed in the period before brain MRI. Brain injury was graded using a validated score. Motor and neurocognitive outcomes were assessed at 2 years for all survivors, and 5.5 years for a subset who had reached this age. RESULTS: Of 223 infants analyzed, 79 (35.4%) had hypoglycemia. MRI was performed in 187 infants. Infants with hypoglycemia (n = 65) had higher brain injury scores (P = .018). After adjustment for HIE severity, hypoglycemia remained associated with higher injury scores (3.6 points higher; 95% CI, 0.8-6.4). Hyperglycemia did not affect MRI scores. In survivors at 2 years (n = 154) and 5.5 years (n = 102), a univariable analysis showed lower 2-year motor scores and lower motor and cognitive scores at preschool age in infants with hypoglycemia. After adjustment for HIE severity, infants with hypoglycemia had 9 points lower IQs (P = .023) and higher odds of adverse outcomes at preschool age (3.6; 95% CI, 1.4-9.0). CONCLUSIONS: More than one-third of infants cooled for HIE had hypoglycemia. These infants had a higher degree of brain injury on MRI and lower cognitive function at preschool age. Strategies to avoid hypoglycemia should be optimized in this setting.
Subject(s)
Brain Injuries , Hypoglycemia , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Brain Injuries/complications , Brain Injuries/therapy , Child, Preschool , Humans , Hypoglycemia/complications , Hypoglycemia/epidemiology , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/therapy , Infant , Magnetic Resonance Imaging/methods , Retrospective StudiesABSTRACT
BACKGROUND: Data on microstructural white matter integrity in preterm infants with post-hemorrhagic ventricular dilatation (PHVD) using diffusion tensor imaging (DTI) are limited. Also, to date, no study has focused on the DTI changes in extremely preterm (EP) infants with PHVD. METHODS: A case-control study of EP infants <28 weeks' gestation with PHVD was conducted. Diffusivity and fractional anisotropy (FA) values of corticospinal tracts (CST) and corpus callosum (CC) were measured using DTI at term-equivalent age. Outcomes were assessed at 2-years-corrected age. RESULTS: Twenty-one infants with PHVD and 21 matched-controls were assessed. FA values in the CC were lower in infants with PHVD compared with controls (mean difference, 0.05 [95% confidence interval (CI), 0.02-0.08], p < 0.001). In infants with periventricular hemorrhagic infarction, FA values in the CC were lower than in controls (mean difference, 0.05 [95% CI, 0.02-0.09], p = 0.005). The composite cognitive and motor scores were associated with the FA value of the CC (coefficient 114, p = 0.01 and coefficient 147, p = 0.004; respectively). CONCLUSIONS: Extremely preterm infants with PHVD showed lower FA values in CC. A positive correlation was also shown between the composite cognitive and motor scores and FA value of the CC at 2-years-corrected age. IMPACT: Extremely preterm infants with post-hemorrhagic ventricular dilatation showed lower fractional anisotropy values in their corpus callosum compared with controls reflecting the impaired microstructure of these commissural nerve fibers that are adjacent to the dilated ventricles. Impaired microstructure of the corpus callosum was shown to be associated with cognitive and motor scores at 2-years-corrected age.
Subject(s)
White Matter , Case-Control Studies , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging/methods , Dilatation , Humans , Infant , Infant, Extremely Premature , Infant, Newborn , White Matter/diagnostic imagingABSTRACT
BACKGROUND: Preterm infants are at risk of neurodevelopmental impairments. At present, proton magnetic resonance spectroscopy (1H-MRS) is used to evaluate brain metabolites in asphyxiated term infants. The aim of this review is to assess associations between cerebral 1H-MRS and neurodevelopment after preterm birth. METHODS: PubMed and Embase were searched to identify studies using 1H-MRS and preterm birth. Eligible studies for this review included 1H-MRS of the brain, gestational age ≤32 weeks, and neurodevelopment assessed at a corrected age (CA) of at least 12 months up to the age of 18 years. RESULTS: Twenty papers evaluated 1H-MRS in preterm infants at an age between near-term and 18 years and neurodevelopment. 1H-MRS was performed in both white (WM) and gray matter (GM) in 12 of 20 studies. The main regions were frontal and parietal lobe for WM and basal ganglia for GM. N-acetylaspartate/choline (NAA/Cho) measured in WM and/or GM is the most common metabolite ratio associated with motor, language, and cognitive outcome at 18-24 months CA. CONCLUSIONS: NAA/Cho in WM assessed at term-equivalent age was associated with motor, cognitive, and language outcome, and NAA/Cho in deep GM was associated with language outcome at 18-24 months CA. IMPACT: In preterm born infants, brain metabolism assessed using 1H-MRS at term-equivalent age is associated with motor, cognitive, and language outcomes at 18-24 months. 1H-MRS at term-equivalent age in preterm born infants may be used as an early indication of brain development. Specific findings relating to NAA were most predictive of outcome.
Subject(s)
Premature Birth , Adolescent , Aspartic Acid , Brain/metabolism , Choline , Female , Humans , Infant , Infant, Newborn , Infant, Premature/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Premature Birth/metabolism , Proton Magnetic Resonance Spectroscopy/methods , ProtonsABSTRACT
BACKGROUND: The mammillary bodies (MBs) have repeatedly been shown to be critical for memory, yet little is known about their involvement in numerous neurological conditions linked to memory impairments, including neonatal encephalopathy. METHODS: We implemented a multicentre retrospective study, assessing magnetic resonance scans of 219 infants with neonatal encephalopathy who had undergone hypothermia treatment in neonatal intensive care units located in the Netherlands and Italy. RESULTS: Abnormal MB signal was observed in ~40% of infants scanned; in half of these cases, the brain appeared otherwise normal. MB involvement was not related to the severity of encephalopathy or the pattern/severity of hypoxic-ischaemic brain injury. Follow-up scans were available for 18 cases with abnormal MB signal; in eight of these cases, the MBs appeared severely atrophic. CONCLUSIONS: This study highlights the importance of assessing the status of the MBs in neonatal encephalopathy; this may require changes to scanning protocols to ensure that the slices are sufficiently thin to capture the MBs. Furthermore, long-term follow-up of infants with abnormal MB signal is needed to determine the effects on cognition, which may enable the use of early intervention strategies. Further research is needed to assess the role of therapeutic hypothermia in MB involvement in neonatal encephalopathy. IMPACT: The MBs are particularly sensitive to hypoxia in neonates. Current hypothermia treatment provides incomplete protection against MB injury. MB involvement is likely overlooked as it can often occur when the rest of the brain appears normal. Given the importance of the MBs for memory, it is necessary that this region is properly assessed in neonatal encephalopathy. This may require improvements in scanning protocols.
Subject(s)
Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Infant, Newborn, Diseases , Humans , Hypothermia/therapy , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/therapy , Infant , Infant, Newborn , Infant, Newborn, Diseases/therapy , Mammillary Bodies , Retrospective StudiesABSTRACT
AIM: To assess the relationship between neonatal brain development and injury with early motor outcomes in infants with critical congenital heart disease (CCHD). METHOD: Neonatal brain magnetic resonance imaging was performed after open-heart surgery with cardiopulmonary bypass. Cortical grey matter (CGM), unmyelinated white matter, and cerebellar volumes, as well as white matter motor tract fractional anisotropy and mean diffusivity were assessed. White matter injury (WMI) and arterial ischaemic stroke (AIS) with corticospinal tract (CST) involvement were scored. Associations with motor outcomes at 3, 9, and 18 months were corrected for repeated cardiac surgery. RESULTS: Fifty-one infants (31 males, 20 females) were included prospectively. Median age at neonatal surgery and postoperative brain magnetic resonance imaging was 7 days (interquartile range [IQR] 5-11d) and 15 days (IQR 12-21d) respectively. Smaller CGM and cerebellar volumes were associated with lower fine motor scores at 9 months (CGM regression coefficient=0.51, 95% confidence interval [CI]=0.15-0.86; cerebellum regression coefficient=3.08, 95% CI=1.07-5.09) and 18 months (cerebellum regression coefficient=2.08, 95% CI=0.47-5.12). The fractional anisotropy and mean diffusivity of white matter motor tracts were not related with motor scores. WMI was related to lower gross motor scores at 9 months (mean difference -0.8SD, 95% CI=-1.5 to -0.2). AIS with CST involvement increased the risk of gross motor problems and muscle tone abnormalities. Cerebral palsy (n=3) was preceded by severe ischaemic brain injury. INTERPRETATION: Neonatal brain development and injury are associated with fewer favourable early motor outcomes in infants with CCHD.
Subject(s)
Brain Injuries , Cerebral Palsy , Child Development/physiology , Developmental Disabilities , Heart Defects, Congenital/surgery , Ischemic Stroke , Motor Skills/physiology , Pyramidal Tracts , Brain Injuries/diagnostic imaging , Brain Injuries/pathology , Brain Injuries/physiopathology , Cerebellum/diagnostic imaging , Cerebellum/growth & development , Cerebellum/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/pathology , Cerebral Palsy/diagnostic imaging , Cerebral Palsy/pathology , Cerebral Palsy/physiopathology , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/etiology , Developmental Disabilities/pathology , Developmental Disabilities/physiopathology , Female , Gray Matter/diagnostic imaging , Gray Matter/growth & development , Gray Matter/pathology , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnostic imaging , Humans , Infant , Infant, Newborn , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/pathology , Ischemic Stroke/physiopathology , Magnetic Resonance Imaging , Male , Prospective Studies , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/growth & development , Pyramidal Tracts/pathology , White Matter/diagnostic imaging , White Matter/growth & development , White Matter/pathologyABSTRACT
BACKGROUND: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for fetal brain growth and development. Our aim was to evaluate the association between serum DHA and AA levels and brain volumes in extremely preterm infants. METHODS: Infants born at <28 weeks gestational age in 2013-2015, a cohort derived from a randomized controlled trial comparing two types of parenteral lipid emulsions, were included (n = 90). Serum DHA and AA levels were measured at postnatal days 1, 7, 14, and 28, and the area under the curve was calculated. Magnetic resonance (MR) imaging was performed at term-equivalent age (n = 66), and volumes of six brain regions were automatically generated. RESULTS: After MR image quality assessment and area under the curve calculation, 48 infants were included (gestational age mean [SD] 25.5 [1.4] weeks). DHA levels were positively associated with total brain (B = 7.966, p = 0.012), cortical gray matter (B = 3.653, p = 0.036), deep gray matter (B = 0.439, p = 0.014), cerebellar (B = 0.932, p = 0.003), and white matter volume (B = 3.373, p = 0.022). AA levels showed no association with brain volumes. CONCLUSIONS: Serum DHA levels during the first 28 postnatal days were positively associated with volumes of several brain structures in extremely preterm infants at term-equivalent age. IMPACT: Higher serum levels of DHA in the first 28 postnatal days are positively associated with brain volumes at term-equivalent age in extremely preterm born infants. Especially the most immature infants suffer from low DHA levels in the first 28 postnatal days, with little increase over time. Future research is needed to explore whether postnatal fatty acid supplementation can improve brain development and may serve as a nutritional preventive and therapeutic treatment option in extremely preterm infants.
Subject(s)
Brain/anatomy & histology , Docosahexaenoic Acids/blood , Infant, Extremely Premature , Arachidonic Acid , Cohort Studies , Female , Gestational Age , Humans , Infant, Newborn , Male , Organ SizeABSTRACT
BACKGROUND: Postmortem examinations frequently show cerebellar injury in infants with severe hypoxic-ischemic encephalopathy (HIE), while it is less well visible on MRI. The primary aim was to investigate the correlation between cerebellar apparent diffusion coefficient (ADC) values and histopathology in infants with HIE. The secondary aim was to compare ADC values in the cerebellum of infants with HIE and infants without brain injury. METHODS: ADC values in the cerebellar vermis, hemispheres and dentate nucleus (DN) of (near-)term infants with HIE (n = 33) within the first week after birth were compared with neonates with congenital non-cardiac anomalies, normal postoperative MRIs and normal outcome (n = 22). Microglia/macrophage activation was assessed using CD68 and/or HLA-DR staining and Purkinje cell (PC) injury using H&E-stained slices. The correlation between ADC values and the histopathological measures was analyzed. RESULTS: ADC values in the vermis (p = 0.021) and DN (p < 0.001) were significantly lower in infants with HIE compared to controls. ADC values in the cerebellar hemispheres were comparable. ADC values in the vermis were correlated with the number and percentage of normal PCs; otherwise ADC values and histology were not correlated. CONCLUSION: Histopathological injury in the cerebellum is common in infants with HIE. ADC values underestimate histopathological injury. IMPACT: ADC values might underestimate cerebellar injury in neonates with HIE. ADC values in the vermis and dentate nucleus of infants with HIE are lower compared to controls, but not in the cerebellar hemispheres. Abnormal ADC values are only found when cytotoxic edema is very severe. ADC values in the vermis are correlated with Purkinje cell injury in the vermis; furthermore, there were no correlations between ADC values and histopathological measures.
Subject(s)
Cerebellum/pathology , Hypoxia-Ischemia, Brain/pathology , Infant, Newborn, Diseases/pathology , Female , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Infant, Newborn , Infant, Newborn, Diseases/diagnostic imaging , Magnetic Resonance Imaging , Male , Retrospective StudiesABSTRACT
BACKGROUND: Improvement in the accuracy of identifying women who are at risk to develop gestational diabetes mellitus (GDM) is warranted, since timely diagnosis and treatment improves the outcomes of this common pregnancy disorder. Although prognostic models for GDM are externally validated and outperform current risk factor based selective approaches, there is little known about the impact of such models in day-to-day obstetric care. METHODS: A prognostic model was implemented as a directive clinical prediction rule, classifying women as low- or high-risk for GDM, with subsequent distinctive care pathways including selective midpregnancy testing for GDM in high-risk women in a prospective multicenter birth cohort comprising 1073 pregnant women without pre-existing diabetes and 60 obstetric healthcare professionals included in nine independent midwifery practices and three hospitals in the Netherlands (effectiveness-implementation hybrid type 2 study). Model performance (c-statistic) and implementation outcomes (acceptability, adoption, appropriateness, feasibility, fidelity, penetration, sustainability) were evaluated after 6 months by indicators and implementation instruments (NoMAD; MIDI). RESULTS: The adherence to the prognostic model (c-statistic 0.85 (95%CI 0.81-0.90)) was 95% (n = 1021). Healthcare professionals scored 3.7 (IQR 3.3-4.0) on implementation instruments on a 5-point Likert scale. Important facilitators were knowledge, willingness and confidence to use the model, client cooperation and opportunities for reconfiguration. Identified barriers mostly related to operational and organizational issues. Regardless of risk-status, pregnant women appreciated first-trimester information on GDM risk-status and lifestyle advice to achieve risk reduction, respectively 89% (n = 556) and 90% (n = 564)). CONCLUSIONS: The prognostic model was successfully implemented and well received by healthcare professionals and pregnant women. Prognostic models should be recommended for adoption in guidelines.
Subject(s)
Diabetes, Gestational/prevention & control , Guideline Adherence/statistics & numerical data , Mass Screening/organization & administration , Models, Statistical , Pregnancy Trimester, First/blood , Adult , Blood Glucose/analysis , Diabetes, Gestational/blood , Diabetes, Gestational/diagnosis , Diabetes, Gestational/epidemiology , Feasibility Studies , Female , Follow-Up Studies , Health Plan Implementation , Healthy Lifestyle , Humans , Mass Screening/standards , Medical History Taking , Middle Aged , Netherlands , Practice Guidelines as Topic , Pregnancy , Prognosis , Prospective Studies , Risk Assessment/methods , Risk FactorsABSTRACT
OBJECTIVE: To describe the sonographic characteristics of periventricular hemorrhagic infarction (PVHI) and their association with mortality and neurodevelopmental disability in very preterm infants born in 2008-2013. STUDY DESIGN: Retrospective multicenter observational cohort study. Diagonal PVHI size was measured and severity score assessed. PVHI characteristics were scored and temporal trends were assessed. Neurodevelopmental outcome at 2 years of corrected age was assessed using either the Bayley Scales of Infant and Toddler Development, Third Edition or the Griffiths Mental Development Scales. Multigroup analyses were applied as appropriate. RESULTS: We enrolled 160 infants with median gestational age of 26.6 weeks. PVHI was mostly unilateral (90%), associated with an ipsilateral grade III intraventricular hemorrhage (84%), and located in the parietal lobe (51%). Sixty-four (40%) infants with PVHI died in the neonatal period. Of the survivors assessed at 2 years of corrected age, 65% had normal cognitive and 69% had normal motor outcomes. The cerebral palsy rate was 42%. The composite outcome of death or severe neurodevelopmental disability was observed in 58%, with no trends over the study period (P = .6). Increasing PVHI severity score was associated with death (P < .001). Increasing PVHI size and severity score were negatively associated with gross motor scores (P = .01 and .03, respectively). Trigone involvement was associated with cerebral palsy (41% vs 14%; P = .004). Associated posthemorrhagic ventricular dilation (36%) was an independent risk factor for poorer cognitive and motor outcomes (P < .001 for both). CONCLUSIONS: Increasing PVHI size and severity score were predictive of less optimal gross motor outcome and death in very preterm infants.
Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Cerebral Infarction/diagnostic imaging , Cerebral Ventricles/diagnostic imaging , Infant, Premature, Diseases/diagnostic imaging , Cerebral Hemorrhage/mortality , Cerebral Hemorrhage/pathology , Cerebral Infarction/mortality , Cerebral Infarction/pathology , Cerebral Palsy/complications , Cerebral Ventricles/pathology , Child, Preschool , Developmental Disabilities/complications , Developmental Disabilities/diagnostic imaging , Female , Gestational Age , Humans , Infant , Infant, Extremely Premature , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/mortality , Infant, Premature, Diseases/pathology , Male , Retrospective Studies , UltrasonographyABSTRACT
OBJECTIVE: To assess the effect of early life nutrition on structural brain development in 2 cohorts of extremely preterm infants, before and after the implementation of a nutrition regimen containing more protein and lipid. STUDY DESIGN: We included 178 infants retrospectively (median gestational age, 26.6 weeks; IQR, 25.9-27.3), of whom 99 received the old nutrition regimen (cohort A, 2011-2013) and 79 the new nutrition regimen (cohort B, 2013-2015). Intake of protein, lipids, and calories was calculated for the first 28 postnatal days. Brain magnetic resonance imaging (MRI) was performed at 30 weeks postmenstrual age (IQR, 30.3-31.4) and term-equivalent age (IQR, 40.9-41.4). Volumes of 42 (left + right) brain structures were calculated. RESULTS: Mean protein and caloric intake in cohort B (3.4 g/kg per day [P < .001] and 109 kcal/kg per day [P = .038]) was higher than in cohort A (2.7 g/kg per day; 104 kcal/kg per day). At 30 weeks, 22 regions were significantly larger in cohort B compared with cohort A, whereas at term-equivalent age, only the caudate nucleus was significantly larger in cohort B compared with cohort A. CONCLUSIONS: An optimized nutrition protocol in the first 28 days of life is associated with temporarily improved early life brain volumes.