Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Glycobiology ; 34(9)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39115362

ABSTRACT

α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.


Subject(s)
Colostrum , Lactalbumin , Milk , Lactalbumin/metabolism , Lactalbumin/chemistry , Animals , Glycosylation , Colostrum/chemistry , Colostrum/metabolism , Cattle , Milk/chemistry , Milk/metabolism , Female , Lactation/metabolism , Amino Sugars/chemistry , Amino Sugars/metabolism , Glycopeptides/metabolism , Glycopeptides/chemistry , Glycopeptides/analysis , Lactose/metabolism , Lactose/chemistry
2.
Pharmacol Res ; 203: 107169, 2024 May.
Article in English | MEDLINE | ID: mdl-38583688

ABSTRACT

BACKGROUND: Defining the ability of prebiotic dietary carbohydrates to influence the composition and metabolism of the gut microbiota is central to defining their health impact in diverse individuals. Many clinical trials are using indirect methods. This study aimed to validate collection and fermentation methods enabling their use in the context of clinical studies. METHODS AND RESULTS: Parameters tested included stool sample acquisition, storage, and growth conditions. Stool from 3 infants and 3 adults was collected and stored under varying conditions. Samples were cultured anaerobically for two days in the presence of prebiotics, whereupon optical density and pH were measured across time. Whole genome shotgun sequencing and NMR metabolomics were performed. Neither the type of collection vial (standard vial and two different BD anaerobic collection vials) nor cryopreservation (-80 °C or 4 °C) significantly influenced either microbial composition at 16 h of anaerobic culture or the principal components of the metabolome at 8 or 16 h. Metagenomic differences were driven primarily by subject, while metabolomic differences were driven by fermentation sugar (2'-fucosyllactose or dextrose). CONCLUSIONS: These data identified a feasible and valid approach for prebiotic fermentation analysis of individual samples in large clinical studies: collection of stool microbiota using standard vials; cryopreservation prior to testing; and collecting fermentation read-out at 8 and 16 hr. Thus, fermentation analysis can be a valid technique for testing the effects of prebiotics on human fecal microbiota.


Subject(s)
Feces , Fermentation , Gastrointestinal Microbiome , Prebiotics , Humans , Prebiotics/analysis , Feces/microbiology , Feces/chemistry , Infant , Adult , Anaerobiosis , Male , Female , Specimen Handling/methods , Metabolomics/methods
3.
Org Biomol Chem ; 22(10): 2091-2097, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38363206

ABSTRACT

Galactooligosaccharides (GOS) are widely used as a supplement in infant nutrition to mimic the beneficial effects found in prebiotic human milk oligosaccharides (HMOs). However, the complexity of the GOS mixture makes it challenging to ascertain which of the GOS components contribute most to their health benefits. Galactosyllactoses (GLs) are lactose-based trisaccharides containing a ß-galactopyranosyl residue at the 3'-position (3'galactosyllactose, 3'-GL), 4'-position (4'-galactosyllactose, 4'-GL), or the 6'-position (6'-galactosyllactose, 6'-GL). These GLs are of particular interest as they are present in both GOS mixtures and human milk at early stages of lactation. However, research on the potential health benefits of these individual GLs has been limited. Gram quantities are needed to assess their health benefits but these GLs are not readily available at this scale. In this study, we report the gram-scale chemical synthesis of 3'-GL, 4'-GL, and 6'-GL. All three galactosyllactoses were obtained on a gram scale in good purity from cheap and commercially available lactose. Furthermore, in vitro incubation of GLs with infant faecal microbiota demonstrates that the GLs were able to increase the abundance of Bifidobacterium and stimulate short chain fatty acid production.


Subject(s)
Gastrointestinal Microbiome , Lactose , Infant , Female , Humans , Lactose/pharmacology , Lactose/chemistry , Oligosaccharides/chemistry , Trisaccharides/pharmacology , Milk, Human/chemistry
4.
Glycobiology ; 33(2): 115-125, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36611013

ABSTRACT

We monitored longitudinal changes in bovine milk IgG in samples from four cows at 9 time points in between 0.5 and 28 days following calving. We used peptide-centric LC-MS/MS on proteolytic digests of whole bovine milk, resulting in the combined identification of 212 individual bovine milk protein sequences, with IgG making up >50 percent of the protein content of every 0.5 d colostrum sample, which reduced to ≤3 percent in mature milk. In parallel, we analyzed IgG captured from the bovine milk samples to characterize its N-glycosylation, using dedicated methods for bottom-up glycoproteomics employing product ion-triggered hybrid fragmentation; data are available via ProteomeXchange with identifier PXD037755. The bovine milk IgG N-glycosylation profile was revealed to be very heterogeneous, consisting of >40 glycoforms. Furthermore, these N-glycosylation profiles changed substantially over the period of lactation, but consistently across the four individual cows. We identified NeuAc sialylation as the key abundant characteristic of bovine colostrum IgG, significantly decreasing in the first days of lactation, and barely detectable in mature bovine milk IgG. We also report, for the first time to our knowledge, the identification of subtype IgG3 in bovine milk, alongside the better-documented IgG1 and IgG2. The detailed molecular characteristics we describe of the bovine milk IgG, and their dynamic changes during lactation, are important not only for the fundamental understanding of the calf's immune development, but also for understanding bovine milk and its bioactive components in the context of human nutrition.


Subject(s)
Colostrum , Immunoglobulin G , Pregnancy , Female , Animals , Cattle , Humans , Colostrum/metabolism , Immunoglobulin G/metabolism , Glycosylation , Chromatography, Liquid , Tandem Mass Spectrometry , Lactation
5.
Org Biomol Chem ; 17(12): 3108-3112, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30843570

ABSTRACT

Galactooligosaccharides (GOS) are widely used in the food industry as prebiotics and in very rare cases, can lead to an allergic reaction. Due to the microheterogeneity of GOS it is very difficult to extract pure and well defined oligosaccharides to establish which component is responsible for the observed allergenicity. Herein, we report the chemical synthesis of a suspected allergen 4PX and three closely related oligosaccharides based on a modular approach. The fact that synthesized 4PX and a regioisomer did not cause basophil activation in subjects with confirmed GOS-allergy excludes both tetrasaccharides as key-epitopes in GOS-allergenicity in Singapore.

6.
Microbiol Mol Biol Rev ; 88(1): e0009423, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38206006

ABSTRACT

SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.


Subject(s)
Gastrointestinal Microbiome , Milk, Human , Infant, Newborn , Female , Humans , Milk, Human/chemistry , Bifidobacterium , Breast Feeding , Oligosaccharides/analysis , Oligosaccharides/metabolism
7.
Nutrients ; 14(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35276975

ABSTRACT

This systematic review brings together human psychobiotic interventions in children and adolescents (aged 6-25 years) to evaluate the efficacy of pre- and probiotic supplements on stress, anxiety, and cognitive outcomes. Psychobiotic interventions in animal studies highlighted sensitivity to effects during development and maturation in multiple domains from emotion to cognitive processing. Several translational psychobiotic interventions in humans have been carried out to assess effects on emotion and cognition during childhood and into adulthood. The findings illustrate that there are limited consistent psychobiotic effects in developing human populations, and this is proposed to be due to heterogeneity in the trials conducted. Consequentially, it is recommended that three specific factors are considered in future psychobiotic trials: (1) Specificity of population studied (e.g., patients, developmental age), (2) specificity of intervention, and (3) homogeneity in outcome measures.


Subject(s)
Cognition , Probiotics , Adolescent , Adult , Anxiety , Anxiety Disorders , Emotions , Humans
8.
Mol Nutr Food Res ; 65(7): e2000425, 2021 04.
Article in English | MEDLINE | ID: mdl-33465830

ABSTRACT

SCOPE: Human milk oligosaccharides (hMOs) can attenuate inflammation by modulating intestinal epithelial cells, but the mechanisms of action are not well-understood. Here, the effects of hMOs on tumor necrosis factor-α (TNF-α) induced inflammatory events in gut epithelial cells are studied. METHODS AND RESULTS: The modulatory effects of 2'-fucosyllactose, 3-fucosyllactose (3-FL), 6'-sialyllactose, lacto-N-tetraose, lacto-N-neotetraose (LNnT), lactodifucotetraose (LDFT), and lacto-N-triaose (LNT2) on immature (FHs 74 Int) and adult (T84) intestinal epithelial cells with or without TNF-α are determined. Interleukin-8 (IL-8) secretion in FHs 74 Int and T84 are quantified to determine hMO induced attenuation of inflammatory events by ELISA. 3-FL, LNnT, and LDFT significantly attenuate TNF-α induced inflammation in FHs 74 Int, while LNT2 induces IL-8 secretion in T84. In addition, microscale thermophoresis assays and ELISA are used to study the possible mechanisms of interaction between effective hMOs and tumor necrosis factor receptor 1 (TNFR1). 3-FL, LNnT, and LDFT exert TNFR1 ectodomain shedding while LNnT also shows binding affinity to TNFR1 with a Kd of 900 ± 660 nM. CONCLUSION: The findings indicate that specific hMO types attenuate TNF-α induced inflammation in fetal gut epithelial cells through TNFR1 in a hMO structure-dependent fashion suggest possibilities to apply hMOs in management of TNF-α dependent diseases.


Subject(s)
Intestinal Mucosa/cytology , Milk, Human/chemistry , Oligosaccharides/pharmacology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Cell Line , Cell Survival , Gastroenteritis/drug therapy , Humans , Hydrolysis , Interleukin-8/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/embryology , Oligosaccharides/chemistry , Protein Domains , Receptors, Tumor Necrosis Factor, Type I/chemistry , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/adverse effects
9.
Front Microbiol ; 11: 569700, 2020.
Article in English | MEDLINE | ID: mdl-33193162

ABSTRACT

Human milk oligosaccharides (hMOs) are important bioactive components in mother's milk contributing to infant health by supporting colonization and growth of gut microbes. In particular, Bifidobacterium genus is considered to be supported by hMOs. Approximately 200 different hMOs have been discovered and characterized, but only a few abundant hMOs can be produced in sufficient amounts to be applied in infant formula. These hMOs are usually supplied in infant formula as single molecule, and it is unknown which and how individual hMOs support growth of individual gut bacteria. To investigate how individual hMOs influence growth of several relevant intestinal bacteria species, we studied the effects of three hMOs (2'-fucosyllactose, 3-fucosyllactose, and 6'-sialyllactose) and an hMO acid hydrolysate (lacto-N-triose) on three Bifidobacteria and one Faecalibacterium and introduced a co-culture system of two bacterial strains to study possible cross-feeding in presence and absence of hMOs. We observed that in monoculture, Bifidobacterium longum subsp. infantis could grow well on all hMOs but in a structure-dependent way. Faecalibacterium prausnitzii reached a lower cell density on the hMOs in stationary phase compared to glucose, while B. longum subsp. longum and Bifidobacterium adolescentis were not able to grow on the tested hMOs. In a co-culture of B. longum subsp. infantis with F. prausnitzii, different effects were observed with the different hMOs; 6'-sialyllactose, rather than 2'-fucosyllactose, 3-fucosyllactose, and lacto-N-triose, was able to promote the growth of B. longum subsp. infantis. Our observations demonstrate that effects of hMOs on the tested gut microbiota are hMO-specific and provide new means to support growth of these specific beneficial microorganisms in the intestine.

10.
Food Funct ; 9(1): 604-613, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29271442

ABSTRACT

Hydrolysates, which are used in hypoallergenic infant formulas, have been found to possess immune modulating effects. For an optimal utilization of hydrolysates, the working mechanisms and responsible proteins underlying the effects should be elucidated. In this study, the immunomodulating activity of whey and soy hydrolysates was studied by quantifying TLR activation and assessing cytokine production in hydrolysate stimulated dendritic cells. The responsible protein fraction was identified and characterized by gel electrophoresis. The immune effects under gastrointestinal conditions were studied by digesting the hydrolysates in an in vitro infant digestion model, after which the digests were analyzed. In both soy and whey hydrolysates, TLR activation and cytokine production in dendritic cells were induced by a fraction containing protein aggregates larger than 1000 kDa, which were formed by electrostatic interactions and disulfide bonds. Only soy aggregates remained intact during duodenal digestion, and maintained the TLR activating capacity. Soy and whey protein aggregates larger than 1000 kDa possess immunomodulatory properties, but only soy aggregates remain under intestinal digestion conditions. This knowledge is important for a better understanding of the effects of hydrolysates.


Subject(s)
Gastrointestinal Tract/metabolism , Immunologic Factors/chemistry , Soybean Proteins/chemistry , Whey Proteins/chemistry , Cytokines/genetics , Cytokines/immunology , Dendritic Cells/immunology , Digestion , Gastrointestinal Tract/immunology , Humans , Immunologic Factors/immunology , Immunologic Factors/metabolism , Infant , Protein Aggregates , Protein Hydrolysates/chemistry , Protein Hydrolysates/immunology , Protein Hydrolysates/metabolism , Soybean Proteins/immunology , Soybean Proteins/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Whey Proteins/immunology , Whey Proteins/metabolism
11.
Mol Nutr Food Res ; 62(23): e1800716, 2018 12.
Article in English | MEDLINE | ID: mdl-30354027

ABSTRACT

SCOPE: Wheat hydrolysates are used in medical nutrition to provide undernourished patients a readily digestible protein source, for instance to recover from chemotherapy-induced intestinal mucosal inflammation. Since many hydrolysates of different sources can modulate the immune system, likely via Toll-like receptors (TLRs), it is hypothesized that also wheat hydrolysates might interact with TLR signaling, which could be a way to prevent intestinal inflammation and damage. METHODS AND RESULTS: The capacity of three wheat hydrolysates to modulate immunity by interfering with TLR signaling is determined. All wheat hydrolysates have TLR modulating effects but only one has strong TLR2 inhibiting effects, attenuating both TLR2/1 and TLR2/6 signaling in a reporter cell system. This is likely induced by direct TLR2-ectodomain binding, as confirmed by ELISA. Furthermore, this TLR2 blocking hydrolysate reduces IL-6 production in human dendritic cells. Application of reversed-phase-ultra HPLC combined with MS reveals that the presence of peptide WQIPEQSR is associated with the observed TLR2 inhibiting capacity. CONCLUSION: The study demonstrates TLR2-inhibiting capacities of a wheat hydrolysate. The findings provide a good start for further research to investigate whether this hydrolysate might contribute to the management of intestinal mucosal inflammation in cancer patients receiving chemotherapy.


Subject(s)
Cytokines/metabolism , Dendritic Cells/drug effects , Peptides/pharmacology , Toll-Like Receptor 2/antagonists & inhibitors , Triticum/chemistry , Dendritic Cells/metabolism , Dose-Response Relationship, Drug , Humans , Hydrolysis , Interleukin-6/metabolism , Peptides/chemistry , Protein Domains , Signal Transduction/drug effects , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 6/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Triticum/immunology
12.
Food Funct ; 9(8): 4164-4172, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30066013

ABSTRACT

Enhancing the epithelial barrier function could be a possible strategy to prevent food allergy or reduce its symptoms. Soy hydrolysates containing bioactive peptides could be instrumental in this. In this study, the protective effects of pretreatment with 6 soy hydrolysates on calcium ionophore A23187-induced TEER reduction were studied in T84 cells. The effects of the most potent soy hydrolysate on tight junction gene expression were studied. In order to identify the underlying pathways involved, the barrier disruptor specificity of the effect was studied by comparing the protective effects on TEER and Lucifer Yellow flux after the exposure to barrier disruptors that work via different intracellular pathways, i.e. the disruptors A23187, mellitin, and deoxynivalenol (DON). Preincubation with one of the six hydrolysates protected the epithelial cells from a decrease in TEER induced by A23187 (restored to 105% of the starting point, while A23187 alone decreased to 53% of the starting value) and mellitin (restored to 11% of the starting point, while mellitin alone decreased to 3.8% of the starting value). This soy hydrolysate was found to increase claudin-1 and decrease claudin-2 expression. The protective effect of the hydrolysate on TEER was specific for the barrier disruptors A23187 and mellitin, but was not observed for DON. This observation suggests that the soy hydrolysate may act via PKC isoforms, which are known to lead to changes in the expression of claudin-1 and 2. Our data suggest that specific soy hydrolysates may be designed to strengthen the epithelial barrier which might be instrumental in the management of the barrier function in individuals at risk of developing food allergy.


Subject(s)
Epithelial Cells/drug effects , Glycine max/chemistry , Calcimycin/toxicity , Cell Line, Tumor , Claudin-1 , Claudins , Gene Expression Regulation/drug effects , Humans , Hydrolysis , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
13.
PLoS One ; 12(6): e0178191, 2017.
Article in English | MEDLINE | ID: mdl-28594834

ABSTRACT

Immunomodulating proteins and peptides are formed during the hydrolysis of cow's milk proteins. These proteins are potential ingredients in functional foods used for the management of a range of immune related problems, both in infants and adults. However, the mechanism behind these effects is unknown. We hypothesize that the interaction of peptides with Toll-like receptors (TLRs) can induce immune effects, since these receptors are known to sample many dietary molecules in the intestine in order to regulate immune effects. To investigate this, we compared the immune effects and TLR activation and inhibition by whey and casein hydrolysates with different hydrolysis levels. We first measured cytokine production in primary peripheral blood mononuclear cells stimulated with either whey, casein, or their hydrolysates. IL-10 and TNFα were induced by whey hydrolysates (decreasing with increasing hydrolysis level), but not by casein hydrolysates. Next, the activation of TLR 2, 3, 5 and 9 receptors were observed by intact and mildly hydrolysed whey proteins only and not by casein hydrolysates in TLR reporter cell lines. Many casein hydrolysates inhibited TLR signaling (mainly TLR 5 and 9). These results demonstrate that the effects of cow's milk proteins on the immune system are protein type and hydrolysis dependent. TLR signaling is suggested as a possible mechanism for differences in effect. This knowledge contributes to a better understanding of the immune effects of hydrolysates and the design of infant formula, and nutrition in general, with specific immunoregulatory effects.


Subject(s)
Immunomodulation , Milk/immunology , Protein Hydrolysates/metabolism , Toll-Like Receptors/metabolism , Adolescent , Animals , Caseins/metabolism , Cattle , Cell Count , Cell Line , Cytokines/biosynthesis , Cytokines/metabolism , Genes, Reporter , Humans , Hydrolysis , Immunomodulation/drug effects , Leukocytes, Mononuclear/metabolism , Ligands , Macrophages/metabolism , Male , NF-kappa B/metabolism , Pentacyclic Triterpenes , Transcription Factor AP-1/metabolism , Triterpenes/pharmacology , Whey Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL