Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Purinergic Signal ; 17(3): 503-514, 2021 09.
Article in English | MEDLINE | ID: mdl-34313915

ABSTRACT

Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03-1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.


Subject(s)
Adenosine A1 Receptor Agonists/therapeutic use , Neuralgia/drug therapy , Neuralgia/metabolism , Receptor, Adenosine A1/biosynthesis , Adenosine A1 Receptor Agonists/pharmacology , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Pain Measurement/drug effects , Pain Measurement/methods , Receptor, Adenosine A1/genetics , Treatment Outcome
2.
Br J Pharmacol ; 179(11): 2361-2377, 2022 06.
Article in English | MEDLINE | ID: mdl-33939841

ABSTRACT

Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Subject(s)
Cyclic GMP , Ganglia, Spinal , Axons/metabolism , Cyclic GMP/metabolism , Female , Ganglia, Spinal/metabolism , Humans , Pregnancy , Sensory Receptor Cells/metabolism , Spinal Cord/metabolism
3.
Cells ; 9(6)2020 06 18.
Article in English | MEDLINE | ID: mdl-32570938

ABSTRACT

Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice. Rab27a mutant mice, which carry a single-nucleotide missense mutation of Rab27a leading to the expression of a nonfunctional protein, show reduced mechanical hyperalgesia and spontaneous pain behavior in inflammatory pain models, while their responses to acute noxious mechanical and thermal stimuli is not affected. Our study uncovers a previously unrecognized function of Rab27a in the processing of persistent inflammatory pain in mice.


Subject(s)
Inflammation/physiopathology , Pain/physiopathology , rab27 GTP-Binding Proteins/physiology , Animals , Disease Models, Animal , Female , Ganglia, Spinal/physiopathology , Gene Expression , Hyperalgesia/physiopathology , Immunohistochemistry , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation, Missense , Pain Measurement , Sensory Receptor Cells/physiology , Spinal Cord/physiopathology , rab27 GTP-Binding Proteins/deficiency , rab27 GTP-Binding Proteins/genetics
4.
Neuropharmacology ; 171: 108087, 2020 07.
Article in English | MEDLINE | ID: mdl-32272140

ABSTRACT

Cyclic nucleotide-gated (CNG) channels, which are directly activated by cAMP and cGMP, have long been known to play a key role in retinal and olfactory signal transduction. Emerging evidence indicates that CNG channels are also involved in signaling pathways important for pain processing. Here, we found that the expression of the channel subunits CNGA2, CNGA3, CNGA4 and CNGB1 in dorsal root ganglia, and of CNGA2 in the spinal cord, is transiently altered after peripheral nerve injury in mice. Specifically, we show using in situ hybridization and quantitative real-time RT-PCR that CNG channels containing the CNGB1b subunit are localized to populations of sensory neurons and predominantly excitatory interneurons in the spinal dorsal horn. In CNGB1 knockout (CNGB1-/-) mice, neuropathic pain behavior is considerably attenuated whereas inflammatory pain behavior is normal. Finally, we provide evidence to support CNGB1 as a downstream mediator of cAMP signaling in pain pathways. Altogether, our data suggest that CNGB1-positive CNG channels specifically contribute to neuropathic pain processing after peripheral nerve injury.


Subject(s)
Cyclic AMP , Cyclic Nucleotide-Gated Cation Channels/genetics , Nerve Tissue Proteins/genetics , Neuralgia/psychology , Pain/chemically induced , Pain/psychology , Animals , Cyclic Nucleotide-Gated Cation Channels/biosynthesis , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Inflammation/chemically induced , Inflammation/pathology , Injections, Spinal , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/pathology , Pain/pathology , Postural Balance/drug effects , Signal Transduction/drug effects , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL