Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
ChemSusChem ; : e202400963, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926939

ABSTRACT

The liquid-phase mass transport is the key factor affecting battery stability. The influencing mechanism of liquid-phase mass transport in the separators is still not clear, the internal environment being a complex multi-field during the service life of lithium-ion batteries. The liquid-phase mass transport in the separators is related to the microstructure of the separator and the physicochemical properties of electrolytes. Here, in-situ local electrochemical impedance spectra were developed to investigate local inhomogeneities in the mass transfer process of lithium-ion batteries. The geometric microstructure of the separator significantly impacts the mass transfer process, with a reduction in porosity leading to increased overpotentials. A competitive relationship among porosity, tortuosity, and membrane thickness in the geometric parameters of the separator were established, resulting in a peak of polarization. The resistance of the liquid-phase mass transfer process is positively correlated with the viscosity of the electrolyte, hindering ion migration due to high viscosity. Polarization is closely related to the electrochemical performance, so a phase diagram of battery performance and inhomogeneous mass transfer was developed to guide the design of the battery. This study provides a foundation for the development of high stability lithium-ion batteries.

2.
Emerg Microbes Infect ; 13(1): 2322671, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38390796

ABSTRACT

The increasing incidence of diseases caused by Coxsackievirus A6 (CV-A6) and the presence of various mutants in the population present significant public health challenges. Given the concurrent development of multiple vaccines in China, it is challenging to objectively and accurately evaluate the level of neutralizing antibody response to different vaccines. The choice of the detection strain is a crucial factor that influences the detection of neutralizing antibodies. In this study, the National Institutes for Food and Drug Control collected a prototype strain (Gdula), one subgenotype D1, as well as 13 CV-A6 candidate vaccine strains and candidate detection strains (subgenotype D3) from various institutions and manufacturers involved in research and development. We evaluated cross-neutralization activity using plasma from naturally infected adults (n = 30) and serum from rats immunized with the aforementioned CV-A6 strains. Although there were differences between the geometric mean titer (GMT) ranges of human plasma and murine sera, the overall trends were similar. A significant effect of each strain on the neutralizing antibody test (MAX/MIN 48.0 ∼16410.3) was observed. Among all strains, neutralization of the S112 strain by 15 different sera resulted in higher neutralizing antibody titers (GMTS112 = 132.0) and more consistent responses across different genotypic immune sera (MAX/MIN = 48.0). Therefore, S112 may serve as a detection strain for NtAb testing in various vaccines, minimizing bias and making it suitable for evaluating the immunogenicity of the CV-A6 vaccine.


Subject(s)
Antibodies, Neutralizing , Vaccines , Adult , Humans , Animals , Mice , Rats , Antibodies, Viral , Research , China
SELECTION OF CITATIONS
SEARCH DETAIL