Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Environ Sci Technol ; 56(13): 9816-9825, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35723509

ABSTRACT

Multiple lines of existing evidence indicate that natural organic matter (NOM) could protect poorly crystalline Fe(III) (oxyhydr)oxides from Fe(II)-catalyzed mineral transformation. Conversely, we find that nano-sized biochar (nano-BC), a pyrogenic form of NOM, promotes the phase transformation of ferrihydrite (Fh) in nano-BC/Fh heteroaggregates in the presence of aqueous Fe(II) and rice root exudates. The nano-BC/Fh heteroaggregates are composed of a core-shell like structure where the inner-layered nano-BC is more compacted and plays the dominant role in accelerating the phase transformation of Fh relative to that in the outer sphere. The extent of phase transformation is more regulated by the reversible redox reactions between quinone and hydroquinone in nano-BC than the electron transfer via its condensed aromatic structures. Furthermore, the reductive organic acids in root exudates contribute to the mineral transformation of nano-BC/Fh associations by donating electrons to Fe(III) through nano-BC. Our results suggest that heteroaggregates between nano-BC and Fe minerals are subjected to partial dissociation during their co-transport, and the stably attached nano-BC is favorable to the phase transformation of poorly crystalline Fe minerals (e.g., Fh), which might have profound implications on biogeochemical cycles of carbon and Fe in the prevailing redox environments.


Subject(s)
Ferric Compounds , Minerals , Exudates and Transudates , Ferric Compounds/chemistry , Ferrous Compounds , Minerals/chemistry , Oxidation-Reduction
2.
Ecotoxicol Environ Saf ; 239: 113687, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35643031

ABSTRACT

In this study, the release of dissolved black carbon (DBC) from bulk-BC, its surface properties, colloidal stability, and oxidative stress to rice seedlings in the presence and absence of rice root exudates were compared. The bulk-BCs were prepared at 550 °C and derived from wood chips and pig manure, respectively. The release of DBC from bulk-BC was significantly enhanced (20.19-23.63%) by the introduction of root exudates, where low molecular weight organic acids played a dominating role in the dissociation of DBC from carbon skeleton. The surface properties of DBC were greatly modified by root exudates including decreases in the surface area (18.13%) and mineral contents (43.90-69.57%). The O-containing groups and graphitization were also enhanced by 11.46% and 18.65%, respectively. Meanwhile, the presence of root exudates not only reduced the colloidal stability of DBC but also lowered the intensity of free radicals (19.44-22.22%) in DBC. Consequently, the oxidative stress of DBC to rice seedlings was significantly (p < 0.05) alleviated, evidenced by reduced antioxidative enzyme activities (5.67-29.25%) and soluble protein content (15.75-46.79%) in rice plants. These results indicate that the interaction between DBC and root exudates could remarkably modify the surface properties and reactivity of DBC, which has profound implications for understanding the behavior and functions of DBC in the environment.


Subject(s)
Oryza , Soot , Animals , Carbon/metabolism , Exudates and Transudates , Oryza/metabolism , Seedlings , Soot/toxicity , Surface Properties , Swine
3.
Environ Sci Technol ; 55(9): 6476-6484, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33844909

ABSTRACT

Biomass combustion results in the formation and wide distribution of black carbon (BC) in soils, wherein the dissolved fractions are among the most active components. Although the presence of dissolved black nitrogen (DBN) in BC has been identified, its environmental behavior and implication are not understood. This study investigated the photochemical transformation and catalytic activity of DBN under simulated solar irradiation. DBN is more easily transformed than dissolved BC due to its photoactive heteroaromatic N structure, and the half-life of DBN produced at 500 °C (8.6 h) is two times shorter than that of the dissolved BC counterpart (23 h). Meanwhile, solar irradiation is favorable for the homoaggregation of DBN. During irradiation, DBN generates not only reactive oxygen species (e.g., 1O2, O2-, and •OH) but also reactive nitrogen species (mainly •ON), which account for its higher photocatalytic degradation of bisphenol A than dissolved BC. These findings shed new light on the impact of heteroatoms on the phototransformation and activity of BC as well as cycling of N in terrestrial systems.


Subject(s)
Nitrogen , Soot , Carbon , Reactive Oxygen Species , Soil , Soot/analysis
4.
Environ Sci Technol ; 54(14): 8821-8829, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32558563

ABSTRACT

Antibiotic resistance genes (ARGs) are considered to be a type of emerging contaminant; their interaction with biochar (BC) could affect their dissemination and fate in the environment. Although adsorption of ARGs onto bulk-BC has been reported, the interaction with nanosized BC (nano-BC) is largely unknown. In this study, the interactions of a model extracellular DNA (eDNA, calf thymus DNA) and two typical ARGs (ampC and ermB) extracted from a natural river with bulk- and nano-BCs from two pyrolysis temperatures (400 and 700 °C) were investigated. Only adsorption was observed on bulk-BCs, while not only adsorption but also fragmentation of these eDNA molecules was found to occur on nano-BCs. Also, their replication was greatly inhibited by nano-BCs. The electron paramagnetic resonance results indicated that hydroxyl radicals produced from persistent free radicals (PFRs) on nano-BCs played a major role in the damage of eDNA. Moreover, the direct contact with nonradical reacting sites and PFRs on nano-BCs also contributed to the decay of eDNA. Comparatively, PFRs in bulk-BCs were difficult to be reached by eDNA because of steric hindrance and played a negligible role in destroying eDNA. These findings highlight the importance of the size effect in evaluating the reactivity and related environmental risks of PFRs on BC and improve our understanding on the interaction between ARGs and BC.


Subject(s)
Anti-Bacterial Agents , Charcoal , Adsorption , Drug Resistance, Microbial/genetics
5.
Water Sci Technol ; 80(8): 1562-1570, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31961818

ABSTRACT

Polymeric ferric sulfate (PFS) was pretreated with a self-made alternating frequency magnetic field for coagulation printing and dyeing (PD) wastewater treatment. The effects of PFS dosage, magnetization intensity, frequency, and time on the removal of chemical oxygen demand (COD), color and turbidity of PD wastewater were investigated. The results indicated that the magnetized PFS significantly improved the removal efficiency in wastewater treatment. When the initial COD, color and turbidity of printing and dyeing wastewater was 464 mg/L, 180 degrees, and 54.8 NTU respectively, the maximum removal rate of COD, color and turbidity was 87.9%, 80.1%, and 95.2% respectively, under the condition of cross frequency magnetic field magnetization PFS. Moreover, the PFS treatment combined with cross-frequency magnetic field could greatly reduce the pollution of iron ions released from iron-based coagulant during wastewater treatment. Characterization of magnetized PFS flocculant by fourier transform infrared spectroscopy, ultraviolet and visible spectrophotometry, and scanning electron microscopy suggested that magnetic crystal with larger size can be formed on the surface of PFS particles.


Subject(s)
Ferric Compounds , Wastewater , Industrial Waste , Magnetic Fields , Printing, Three-Dimensional , Waste Disposal, Fluid
6.
Environ Pollut ; 320: 121100, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36669715

ABSTRACT

The pyrolysis of biomass containing excessive heavy metals is likely to produce heavy metal contaminated biochar (BC). Although multiple lines of evidence indicate that higher charring temperature leads to enhanced immobilization of heavy metals in BC, we find that particle size could also play a critical role in the content of heavy metals in BC and BC ecotoxicity. Here, BC derived from cadmium (Cd) enriched rice straw was prepared at different temperatures (300-600 °C) and divided into macro-, colloidal-, and nano-sized fractions, respectively. The content and chemical forms of Cd in BC fractions as well as related algal toxicity were examined. The results show that for the same temperature BC the content of Cd followed an order of colloidal-BC > macro-BC > nano-BC; and the residual fractions of Cd significantly decreased (3.47-16.08%) while that of acid soluble and reducible fractions significantly increased (4.13-16.51% and 0.24-1.71%, respectively) with decreasing particle size of BC. Consistently, colloidal-BC exhibited the highest ecotoxicity for Scenedesmus obliquus. The acid soluble fractions of Cd in macro- and colloidal-BC played a dominating role in their algal toxicity (p < 0.05). However, the ecotoxicity of nano-BC was more dependent on the total content of Cd than specific fractions probably due to the phagocytosis by algal cells. These results indicate that the chemical forms and ecotoxicity of Cd in BC could be remarkably modified by its particle size, which has profound implications for understanding the behavior and potential risk of heavy metal contaminated BC in the environment.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Particle Size , Soil Pollutants/analysis , Soil/chemistry , Metals, Heavy/analysis , Charcoal/chemistry , Oryza/chemistry
7.
J Hazard Mater ; 427: 127870, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34848066

ABSTRACT

Nanoplastics (NPs) are widely detected in aquatic ecosystems and attracting considerable attention. Although ecotoxicological impacts of NPs on aquatic biota are increasingly identified, the extent and magnitude of these detrimental effects on fish and aquatic invertebrates still lack systematic quantification and mechanistic interpretation. Here, the toxicity, influencing factors, and related mechanisms of NPs to fish and aquatic invertebrates are critically reviewed and summarized based on a total of 634 biological endpoints through a meta-analysis, where five vital response categories including growth, consumption, reproduction, survival, and behavior were emphasized to elucidate the negative impacts of NPs to fish and aquatic invertebrates from physiological to molecular levels. Our results revealed that NPs significantly decreased the survival, behavior, and reproduction of fish and/or aquatic invertebrates by 56.1%, 24.2%, and 36.0%, respectively. NPs exposure increased the oxidative stress and oxidative damage by 72.0% and 9.6%, respectively; while significantly decreased antioxidant prevention system and neurotransmission by 24.4% and 15.9%, respectively. Also, the effects of particle size, functional group, and concentration range of NPs on the physiological and biochemical reactions in the living organisms were discussed. This information is helpful to more accurately understanding the underlying toxic mechanisms of NPs to aquatic biota and guiding future studies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Ecotoxicology , Fishes , Invertebrates , Water Pollutants, Chemical/toxicity
8.
Membranes (Basel) ; 11(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204750

ABSTRACT

Mixed matrix membranes have received ever-growing attention due to their high separation performance, taking the advantages of both porous fillers and polymer backbones. However, limitations still exist due to the instability of polymers in harsh environments. Here, Kevlar aramid nanofibers, a nanoscale version of poly(paraphenylene terephthalamide), were applied to fabricate a nanofiltration membrane by a thermo-assisted phase inversion method due to their high mechanical strength, physical stability and resistance to solvents. Biochar was incorporated in the Kevlar nanofibers to evaluate its performance in dye/salt separation performance. The fillers' distribution in the polymeric matrix, structural characteristics, and the interaction of fillers with the polymer in the membrane were characterized via SEM, FTIR, AFM and contact angle analysis. Under the optimal fabrication conditions, the obtained membrane exhibited a pure water flux of 3.83 L m-2 h-1 bar-1 with a dye rejection of 90.55%, 93.54% and 95.41% for Congo red, methyl blue and Reactive blue 19, respectively. Meanwhile, the mixed matrix membrane maintained a salt rejection of 59.92% and 85.37% for NaCl and Na2SO4, respectively. The obtained membrane with high separation performance suggested that Kevlar nanofiber and biochar are good candidates for membrane synthesis.

9.
Sci Total Environ ; 697: 134083, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31473548

ABSTRACT

The excess release of engineered nanomaterials into farmland poses a serious threat to food security. Although rice varieties exhibit substantial variation in cadmium accumulation, their responses to Cd-based nanoparticles are largely unknown. In this work, we investigated the accumulation of cadmium telluride quantum dots (CdTe QDs at 0.5, 1.0, 2.5, 5.0mg-Cd/L) in two rice varieties with different Cd accumulation capacity. It was found that 5.0mg-Cd/L of CdTe QDs had minor growth inhibition to the high-Cd-accumulating variety (T705) relative to the low-Cd-accumulating variety (X24) after 7-day exposure. The two rice varieties had comparable Cd content in roots; however, T705 exhibited higher Cd content in shoots than X24. Transmission electron and confocal laser scanning microscopic observations demonstrated that more CdTe QDs can be transported and accumulated from roots to shoots in T705. The activities and gene expression of antioxidative enzymes in leaves of T705 increased more significantly than those of X24. Our findings for the first time validated that Cd accumulation divergence exists in different rice varieties when they are exposed to Cd-based QDs, the genetic basis for which needs to be further examined.


Subject(s)
Cadmium/metabolism , Oryza/metabolism , Quantum Dots/chemistry , Soil Pollutants/metabolism , Antioxidants/metabolism , Gene Expression , Tellurium
SELECTION OF CITATIONS
SEARCH DETAIL