Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256133

ABSTRACT

Paeonia ostii 'Feng Dan' is widely cultivated in China for its ornamental, medicinal, and edible properties. The whole plant of tree peony is rich in bioactive substances, while the comprehensive understanding of metabolites in the leaves is limited. In this study, an untargeted metabolomics strategy based on UPLC-ESI-TOF-MS was conducted to analyze the dynamic variations of bioactive metabolites in P. ostii 'Feng Dan' leaves during development. A total of 321 metabolites were rapidly annotated based on the GNPS platform, in-house database, and publications. To accurately quantify the selected metabolites, a targeted method of HPLC-ESI-QQQ-MS was used. Albiflorin, paeoniflorin, pentagalloylglucose, luteolin 7-glucoside, and benzoylpaeoniflorin were recognized as the dominant bioactive compounds with significant content variations during leaf development. Metabolite variations during the development of P. ostii 'Feng Dan' leaves are greatly attributed to the variations in antioxidant activities. Among all tested bacteria, the leaf extract exhibited exceptional inhibitory effects against Streptococcus hemolytis-ß. This research firstly provides new insights into tree peony leaves during development. The stages of S1-S2 may be the most promising harvesting time for potential use in food or pharmaceutical purposes.


Subject(s)
Paeonia , China , Databases, Factual , Food , Liquid Chromatography-Mass Spectrometry
2.
Environ Pollut ; 345: 123509, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38325512

ABSTRACT

Coal fly ash (CFA), an industrial solid waste, can be utilized to synthesize Zeolite Socony Mobil-5 (ZSM-5) by incorporating an external silica source. In this study, a series of ZSM-5 zeolites were synthesized using rice husk ash (RHA) as the primary silica source and CFA as the primary aluminum source under controlled hydrothermal reaction conditions, and the growth mechanism of ZSM-5 was investigated. The process of ZSM-5 growth was featured by the transformation of hyperpoly silico-aluminate in CFA and RHA into monomers. These monomers formed crystal nuclei connected in a five-membered ring structure under the influence of Tetrapropyl ammonium hydroxide (TPAOH). The surplus monomeric silica-aluminate grew on the nucleus surface due to the addition of the silica source within RHA (RHA-SiO2), ultimately resulting in the development of ZSM-5 zeolite. Characterization results demonstrated that RHA-SiO2 exhibited favorable physical and chemical properties during the ZSM-5 synthesis, with a crystallinity of 99.03%, a specific surface area of 321.19 m2/g, a weight loss of only 3.06% at 800 °C and a total acidity of 0.65 mmol/g. To evaluate the catalytic performance of ZSM-5, Fe/Cu-modified ZSM-5 was developed and used as the catalyst for the degradation of tetracycline (TC) in Fenton-like oxidation. The results indicated that Fe/Cu-ZSM-5 exhibited excellent activity and stability as the catalyst for TC degradation and mineralization. The maximum TC degradation rate reached 99.02% in 10 min and the TOC removal could be up to 69.32% in 2 h. Characterization results indicated that the Fe/Cu ions redox cycle accelerated the generation of active species (1O2 and ˙OH) in Fenton-like systems. The ZSM-5 zeolite synthesized from solid waste demonstrated superb stability and catalytic activity, leading to the effective removal of TC. Since real wastewater generally contains various pollutants, future research efforts should focused on multi-pollutant treatment.


Subject(s)
Oryza , Zeolites , Coal Ash/chemistry , Zeolites/chemistry , Oryza/chemistry , Solid Waste , Silicon Dioxide/chemistry , Oxidation-Reduction , Tetracycline , Anti-Bacterial Agents , Coal
SELECTION OF CITATIONS
SEARCH DETAIL