Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Phys Chem Chem Phys ; 26(4): 3029-3035, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38179875

ABSTRACT

Lead apatites, distinguished and compelling bulk materials with the stoichiometric arrangement as Pb10(POx)6Oy, are renowned for their structural complexity. Recently, the discovery of possible room-temperature superconductivity under ambient pressure in copper-substituted lead apatites has engendered considerable interest within both the physics community and beyond. Nevertheless, exploration of pristine Pb10(POx)6Oy parent structures has hitherto remained elusive. In this study, we employ density functional theory (DFT) calculations to investigate the effects of oxygen defects on the electronic structures of Pb10(POx)6Oy and Pb9Cu(POx)6Oy. We scrutinize two distinct categories of defects: oxygen atoms enmeshed within POx groups (Ox) and solitary oxygen atoms (Oy). Our investigation uncovers a profound influence of these defects on the band structure. Specifically, the introduction of Oy defects prompts a remarkable transition in Pb10(PO4)6Oy from a metal to semiconductor to metal state, accompanied by pivotal shifts in the principal electronic contributors from p orbitals of Oy to those of Pb atoms. Furthermore, the introduction of Ox defects in Pb10(POx)6O1 engenders metamorphosis in the band structure, transmuting it from a semiconductor to a metallic state. Significantly, our findings pinpoint the suitable range of x in the Pb10(POx)6O1 configuration as lying between 2 and 4. Additionally, our study also demonstrates that the oxygen defects (Ox/Oy) do not affect the metallic properties of copper-substituted lead apatites. This study elucidates the significant role of oxygen defects in modulating the electronic properties of apatite materials, offering insights into potential interdisciplinary applications. This establishes a crucial link between material composition and electronic behavior, revealing key mechanisms for engineering functionality in lead apatites and other advanced materials.

2.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904407

ABSTRACT

Two-dimensional (2D) Janus transition metal dichalcogenides MXY manifest novel physical properties owing to the breaking of out-of-plane mirror symmetry. Recently, the 2H phase of MoSH has been demonstrated to possess intrinsic superconductivity, whereas the 1T phase exhibits a charge density waves state. In this paper, we have systematically studied the stability and electron-phonon interaction characteristics of MoSLi. Our results have shown that both the 2H and 1T phases of MoSLi are stable, as indicated by the phonon spectrum and the ab initio molecular dynamics. However, the 1T phase exhibits an electron-phonon coupling constant that is twice as large as that of the 2H phase. In contrast to MoSH, the 1T phase of MoSLi exhibits intrinsic superconductivity. By employing the ab initio anisotropic Migdal-Eliashberg formalism, we have revealed the two-gap superconducting nature of 1T-MoSLi, with a transition temperature (Tc) of 14.8 K. The detailed analysis indicates that the superconductivity in 1T-MoSLi primarily originates from the interplay between the vibration of the phonon modes in the low-frequency region and the dz2 orbital. These findings provide a fresh perspective on superconductivity within Janus structures.

3.
Molecules ; 29(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38398579

ABSTRACT

While nanoporous graphene oxide (GO) is recognized as one of the most promising reverse osmosis desalination membranes, limited attention has been paid to controlling desalination performance through the large GO pores, primarily due to significant ion leakage resulting in the suboptimal performance of these pores. In this study, we employed a molecular dynamics simulation approach to demonstrate that Mg2+ ions, adhered to carboxylated GO nanopores, can function as gates, regulating the transport of ions (Na+ and Cl-) through the porous GO membrane. Specifically, the presence of divalent cations near a nanopore reduces the concentration of salt ions in the vicinity of the pore and prolongs their permeation time across the pore. This subsequently leads to a notable enhancement in salt rejection rates. Additionally, the ion rejection rate increases with more adsorbed Mg2+ ions. However, the presence of the adsorbed Mg2+ ions compromises water transport. Here, we also elucidate the impact of graphene oxidation degree on desalination. Furthermore, we design an optimal combination of adsorbed Mg2+ ion quantity and oxidation degree to achieve high water flux and salt rejection rates. This work provides valuable insights for developing new nanoporous graphene oxide membranes for controlled water desalination.

4.
Langmuir ; 39(25): 8638-8645, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37320857

ABSTRACT

Acetylene (C2H2) is an important and widely used raw material in various industries (such as petrochemical). Generally, a product yield is proportional to the purity of C2H2; however, C2H2 from a typical industrial gas-production process is commonly contaminated by CO2. So far, the achievement of high-purity C2H2 separated from a CO2/C2H2 mixture is still challenging due to their very close molecular dimensions and boiling temperatures. Taking advantage of their quadrupoles with opposite signs, here, we show that the graphene membrane embedded with crown ether nanopores can achieve an unprecedented separation efficiency of CO2/C2H2. Combining the molecular dynamics simulation and the density functional theory (DFT) approaches, we discovered that the electrostatic gas-pore interaction favorably allows the fast transport of CO2 through crown ether nanopores while completely prohibiting C2H2 transport, which yields a remarkable permeation selectivity. In particular, the utilized crown ether pore is capable of allowing the individual transport of CO2 while completely rejecting the passage of C2H2, independent of the applied pressures, fed gases ratios, and exerted temperatures, featuring the superiority and robustness of the crown pore in CO2/C2H2 separation. Further, DFT and PMF calculations demonstrate that the transport of CO2 through the crown pore is energetically more favorable than the transport of C2H2. Our findings reveal the potential application of graphene crown pore for CO2 separation with outstanding performance.

5.
J Chem Inf Model ; 63(13): 4170-4179, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37319424

ABSTRACT

The drug-resistant bacteria, particularly multidrug-resistant bacteria, has emerged as a major global public health concern posing serious threats to human life and survival. Nanomaterials, including graphene, have shown promise as effective antibacterial agents owing to their unique antibacterial mechanism compared with traditional drugs. Despite the structural similarity to graphene, the potential antibacterial activity of carbon nitride polyaniline (C3N) remains unexplored. In this study, we employed molecular dynamics simulations to investigate the effects of the interaction between the C3N nanomaterial and the bacterial membrane to evaluate the potential antibacterial activity of C3N. Our results suggest that C3N is capable of inserting deep into the bacterial membrane interior, regardless of the presence or absence of positional restraints in the C3N. The insertion process also resulted in local lipid extraction by the C3N sheet. Additional structural analyses revealed that C3N induced significant changes in membrane parameters, including mean square displacement, deuterium order parameters, membrane thickness, and area per lipid. Docking simulations, where all the C3N are restraint to a specific positions, confirmed that C3N can extract lipids from the membrane, indicating the strong interaction between the C3N material and the membrane. Free-energy calculations further revealed that the insertion of the C3N sheet is energetically favorable and that C3N exhibits membrane insertion capacity comparable to that observed for graphene, suggesting their potential for similar antibacterial activity. This study provides the first evidence of the potential antibacterial properties of C3N nanomaterials via bacterial membrane damage and underscores the potential for its use as antibacterial agents in the future applications.


Subject(s)
Graphite , Molecular Dynamics Simulation , Humans , Graphite/pharmacology , Graphite/chemistry , Cell Membrane/chemistry , Lipids , Anti-Bacterial Agents/pharmacology
6.
Phys Chem Chem Phys ; 25(16): 11261-11267, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37060110

ABSTRACT

With the progressively increasing demand for freshwater, the shortage of global freshwater resources has become one of the most serious events that all humans are facing now. The reverse osmosis (RO) technology that achieves freshwater from seawater is a promising strategy. However, current RO membranes suffer from the bottleneck of low efficiency. In this work, we designed a RO membrane based on a novel two-dimensional nanomaterial, boridene, prepared by stacking them into lamellar nanochannels. We employed the molecular dynamics (MD) simulation approach to investigate the desalination performance of the designed boridene lamellar membrane. Our results showed that the water permeability through the boridene membrane increased following the incremental interlayer spacing. In addition, the boridene membrane exhibits high water permeability and ideal salt rejection, featuring water permeability far beyond those obtained from commercial RO membranes with two orders of magnitude enhancement. Further free energy calculations demonstrated that the water molecules are energetically more favorable to transport through the boridene lamellar nanochannels than ions. Therefore, our results highlight that the boridene lamellar nanochannel-based filtration membrane can be utilized as a potential outstanding candidate in RO membranes for future desalination applications.

7.
J Chem Phys ; 159(1)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37403850

ABSTRACT

Thermal conductivity and power factor are key factors in evaluating heat transfer performance and designing thermoelectric conversion devices. To search for materials with ultralow thermal conductivity and a high power factor, we proposed a set of universal statistical interaction descriptors (SIDs) and developed accurate machine learning models for the prediction of thermoelectric properties. For lattice thermal conductivity prediction, the SID-based model achieved the state-of-the-art results with an average absolute error of 1.76 W m-1 K-1. The well-performing models predicted that hypervalent triiodides XI3 (X = Rb, Cs) have ultralow thermal conductivities and high power factors. Combining first-principles calculations, the self-consistent phonon theory, and the Boltzmann transport equation, we obtained the anharmonic lattice thermal conductivities of 0.10 and 0.13 W m-1 K-1 for CsI3 and RbI3 in the c-axis direction at 300 K, respectively. Further studies show that the ultralow thermal conductivity of XI3 arises from the competition of vibrations between alkali metal atoms and halogen atoms. In addition, at 700 K, the thermoelectric figure of merit ZT values of CsI3 and RbI3 are 4.10 and 1.52, respectively, at the optimal hole doping level, which indicates hypervalent triiodides are potential high performance thermoelectric materials.

8.
Part Fibre Toxicol ; 18(1): 17, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902647

ABSTRACT

BACKGROUND: Disruption of microbiota balance may result in severe diseases in animals and phytotoxicity in plants. While substantial concerns have been raised on engineered nanomaterial (ENM) induced hazard effects (e.g., lung inflammation), exploration of the impacts of ENMs on microbiota balance holds great implications. RESULTS: This study found that rare earth oxide nanoparticles (REOs) among 19 ENMs showed severe toxicity in Gram-negative (G-) bacteria, but negligible effects in Gram-positive (G+) bacteria. This distinct cytotoxicity was disclosed to associate with the different molecular initiating events of REOs in G- and G+ strains. La2O3 as a representative REOs was demonstrated to transform into LaPO4 on G- cell membranes and induce 8.3% dephosphorylation of phospholipids. Molecular dynamics simulations revealed the dephosphorylation induced more than 2-fold increments of phospholipid diffusion constant and an unordered configuration in membranes, eliciting the increments of membrane fluidity and permeability. Notably, the ratios of G-/G+ reduced from 1.56 to 1.10 in bronchoalveolar lavage fluid from the mice with La2O3 exposure. Finally, we demonstrated that both IL-6 and neutrophil cells showed strong correlations with G-/G+ ratios, evidenced by their correlation coefficients with 0.83 and 0.92, respectively. CONCLUSIONS: This study deciphered the distinct toxic mechanisms of La2O3 as a representative REO in G- and G+ bacteria and disclosed that La2O3-induced membrane damages of G- cells cumulated into pulmonary microbiota imbalance exhibiting synergistic pulmonary toxicity. Overall, these findings offered new insights to understand the hazard effects induced by REOs.


Subject(s)
Metals, Rare Earth , Microbiota , Nanoparticles , Animals , Biotransformation , Mice , Oxides
9.
Sensors (Basel) ; 20(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244392

ABSTRACT

With the continuous progress of science and technology, intelligent wireless sensor network (IWSN) communication has become indispensable in its role in production and life because of its convenient network settings and flexible use. However, with the widespread availability of intelligent wireless sensor networks, the use of many wireless sensor nodes constitutes a multi-node wireless communication system, which turns the accuracy and low complexity of multi-node detection in sensor networks into a problem. Although the traditional algorithm has excellent performance, it cannot give consideration to both accuracy and complexity. Therefore, a maximum logarithm message passing algorithm based on serial and threshold (S-T-Max-log-MPA) for multi-mode detection in IWSN is proposed in this paper. In this algorithm, the threshold is used to determine the necessary conditions of sensor node stability first, and then the sensor node information updating is integrated into the resource node information updating, so that the system can maintain good accuracy, performance, and change the situation of poor system accuracy at low threshold. Compared with the traditional algorithm, the proposed algorithm significantly changes the algorithm complexity reduction rate of the system multi-node detection. Simulation results show that the algorithm has a good balance between accuracy and complexity reduction rate.

10.
Sensors (Basel) ; 20(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32070005

ABSTRACT

Sparse Code Multiple Access (SCMA) technology is a new multiple access scheme based on non-orthogonal spread spectrum technology, which was proposed by Huawei in 2014. In the algorithm application of this technology, the original Message Passing Algorithm (MPA) has slow convergence speed and high algorithm complexity. The threshold-based MPA has a high Bit Error Ratio (BER) when the threshold is low. In the Maximum logarithm Message Passing Algorithm (Max-log-MPA), the approximation method is used, which will cause some messages to be lost and the detection performance to be poor. Therefore, in order to solve the above problems, a Threshold-Based Max-log-MPA (T-Max-log-MPA) low complexity multiuser detection algorithm is proposed in this paper. The Maximum logarithm (Max-log) algorithm is combined with threshold setting, and the stability of user nodes is considered as a necessary condition for decision in the algorithm. Before message updating, the user information nodes are judged whether the necessary conditions for the stability of the user node have been met, and then the threshold is determined. Only users who meet the threshold condition and pass the necessary condition of user node stability can be decoded in advance. In the whole process, the logarithm domain MPA algorithm is used to convert an exp operation and a multiplication operation into a maximum value and addition operation. The simulation results show that the proposed algorithm can effectively reduce the computational complexity while ensuring the BER, and with the increase of signal-to-noise ratio, the effect of the Computational Complexity Reduction Ratio (CCRR) is more obvious.

11.
Phys Chem Chem Phys ; 21(18): 9520-9530, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31020281

ABSTRACT

Despite significant interest in molybdenum disulfide (MoS2) nanomaterials, particularly in biomedicine, their biological effects have been understudied. Here, we explored the effect of MoS2 nanoflakes on the ubiquitous mitochondrial porin voltage-dependent anion channel (VDAC1), using a combined computational and functional approach. All-atomic molecular dynamics simulations suggest that MoS2 nanoflakes make specific contact interactions with human VDAC1. We show that the initial contacts between hVDAC1 and the nanoflake are hydrophobic but are subsequently enhanced by a complex interplay of van der Waals (vdW), hydrophobic and electrostatic interactions in the equilibrium state. Moreover, the MoS2 nanoflake can insert into the lumen of the hVDAC1 pore. Free-energy calculations computed by the potential of mean force (PMF) verify that the blocked configuration of the MoS2-hVDAC1 complex is more energetically favorable than the non-blocked binding mode. Consistent with these predictions, we showed that MoS2 depolarizes the mitochondrial membrane potential (Ψm) and causes a decrease in the viability of mammalian tissue culture cells. These findings might shed new light on the potential biological effect of MoS2 nanomaterials.

12.
Small ; 14(52): e1803509, 2018 12.
Article in English | MEDLINE | ID: mdl-30474237

ABSTRACT

The widespread use of nanomaterials, such as carbon based 2D nanomaterials, in biomedical applications, has been accompanied by a growing concern on their biocompatibility, and in particular, on how they may affect the integrity of cell membranes. Herein, the interactions between C2 N, a novel 2D nanomaterial, and human red blood cell membranes are explored using a combined experimental and theoretical approach. The experimental microscopies show that C2 N exerts a negligible hemolysis effect on the blood cells with a superior compatibility to their cell membranes, when compared with the control system, reduced graphene oxide (rGO), which is found to be highly hemolytic. The molecular dynamics simulations further reveal the underlying molecular mechanisms, which indicate that C2 N prefers to be adsorbed flat on the water-membrane interface. Interaction energy analyses demonstrate the crucial role of Coulombic contributions, originating from the unique electrostatic potential surface of C2 N, in preventing C2 N from penetrating into cell membranes. These findings indicate a high compatibility of C2 N with cell membranes, which may provide useful foundation for the future exploration of this 2D nanomaterial in related biomedical applications.


Subject(s)
Erythrocyte Membrane/metabolism , Graphite/chemistry , Nanostructures/chemistry , Humans , Molecular Dynamics Simulation
13.
Phys Chem Chem Phys ; 20(48): 30384-30391, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30489583

ABSTRACT

Heavy metal ions from water and wastewater are non-biodegradable and tend to accumulate in the soil and living organisms, polluting the environment and causing serious health hazards in humans. Therefore, effective treatment of heavy metal ions in aqueous media is critical for public health and environmental sustainability. In this paper, we employ molecular dynamics simulations to investigate the removal efficiency of heavy metal cations (Cd2+, Hg2+, and Pb2+) by a zirconium phosphonate based metal-organic framework (MOF) filter and also to explore its underlying molecular mechanism. Our results show that the inherently porous MOF filter shows a superior efficiency (>95%) in the removal of heavy metal cations under a wide range of pressures (50 to 350 MPa). This superior efficiency is achieved by absorption and blockage of these cations within MOF filters via two distinct binding patterns, "loose mode" with water molecules as a mediator, and ''tight mode'' without any mediating molecules. These findings provide new insight for applying the MOF nanopores as potential filters in the removal of hazardous heavy metal cations in the environment.

14.
Small ; 13(3)2017 Jan.
Article in English | MEDLINE | ID: mdl-27762498

ABSTRACT

Graphene and graphene-based nanomaterials are broadly used for various biomedical applications due to their unique physiochemical properties. However, how graphene-based nanomaterials interact with biological systems has not been thoroughly studied. This study shows that graphene oxide (GO) nanosheets retard A549 lung carcinoma cell migration through nanosheet-mediated disruption of intracellular actin filaments. After GO nanosheets treatment, A549 cells display slower migration and the structure of the intracellular actin filaments is dramatically changed. It is found that GO nanosheets are capable of absorbing large amount of actin and changing the secondary structures of actin monomers. Large-scale all-atom molecular dynamics simulations further reveal the interactions between GO nanosheets and actin filaments at molecular details. GO nanosheets can insert into the interstrand gap of actin tetramer (helical repeating unit of actin filament) and cause the separation of the tetramer which eventually leads to the disruption of actin filaments. These findings offer a novel mechanism of GO nanosheet induced biophysical responses and provide more insights into their potential for biomedical applications.


Subject(s)
Actin Cytoskeleton/drug effects , Cell Movement/drug effects , Graphite/pharmacology , Oxides/pharmacology , A549 Cells , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Death/drug effects , Graphite/chemistry , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Oxides/chemistry
15.
Phys Chem Chem Phys ; 19(4): 3039-3045, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28079199

ABSTRACT

Molybdenum disulfide (MoS2) has recently emerged as a promising nanomaterial in a wide range of applications due to its unique and impressive properties. For example, MoS2 has gained attention in the biomedical field because of its ability to act as an antibacterial and anticancer agent. However, the potential influence of this exciting nanomaterial on biomolecules is yet to be extensively studied. Molecular dynamics (MD) simulations are invaluable tools in the examination of protein interactions with nanomaterials such as MoS2. Previous protein MD studies have employed MoS2 force field parameters which were developed to accurately model bulk crystal structures and thermal heat transport but may not necessarily be amendable to its properties at the interface with biomolecules. By adopting a newly developed MoS2 force field, which was designed to better capture its interaction with water and proteins, we have examined the changes in protein structures between the original and refitted MoS2 force field parameters of three representative proteins, polyalanine (α-helix), YAP65 WW-domains (ß-sheet), and HP35 (globular protein) when adsorbed onto MoS2 nanomaterials. We find that the original force field, with much larger van der Waals (vdW) contributions, resulted in more dramatic protein structural damage than the refitted parameters. Importantly, some denaturation of the protein tertiary structure and the local secondary structure persisted with the refitted force field albeit overall less severe MoS2 denaturation capacity was found. This work suggests that the denaturation ability of MoS2 to the protein structure is not as dire as previously reported and provides noteworthy findings on the dynamic interactions of proteins with this emergent material.

16.
Soft Matter ; 12(3): 817-23, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26537824

ABSTRACT

Ultra-thin nanopores have become promising biological sensors because of their outstanding signal-to-noise ratio and spatial resolution. Here, we show that boron nitride (BN), which is a new two-dimensional (2D) material similar to graphene, could be utilized for making a nanopore with an atomic thickness. Using an all-atom molecular dynamics simulation, we investigated the dynamics of DNA translocation through the BN nanopore. The results of our simulations demonstrated that it is possible to detect different double-stranded DNA (dsDNA) sequences from the recording of ionic currents through the pore during the DNA translocation. Surprisingly, opposite to results for a graphene nanopore, we found the calculated blockage current for poly(A-T)40 in a BN nanopore to be less than that for poly(G-C)40. Also in contrast with the case of graphene nanopores, dsDNA models moved smoothly and in an unimpeded manner through the BN nanopores in the simulations, suggesting a potential advantage for using BN nanopores to design stall-free sequencing devices. BN nanopores, which display several properties (such as being hydrophilic and non-metallic) that are superior to those of graphene, are thus expected to find applications in the next generation of high-speed and low-cost biological sensors.


Subject(s)
Boron Compounds/chemistry , DNA/chemistry , Nanopores/ultrastructure , Graphite/chemistry , Molecular Dynamics Simulation , Motion
17.
J Chem Phys ; 144(17): 175103, 2016 May 07.
Article in English | MEDLINE | ID: mdl-27155655

ABSTRACT

Recent reports of mono- and few-layer molybdenum disulfide (MoS2), a representative transition metal dichacogenide (TMD), as antibacterial and anticancer agents have shed light on their potential in biomedical applications. To better facilitate these promising applications, one needs to understand the biological effects of these TMDs as well, such as their potential adverse effects on protein structure and function. Here, we sought to understand the interaction of MoS2 nanosheets with peptides using molecular dynamics simulations and a simple model polyalanine with various lengths (PAn, n = 10, 20, 30, and 40; mainly α - helices). Our results demonstrated that MoS2 monolayer has an exceptional capability to bind all peptides in a fast and strong manner. The strong attraction from the MoS2 nanosheet is more than enough to compensate the energy needed to unfold the peptide, regardless of the length, which induces drastic disruptions to the intra-peptide hydrogen bonds and subsequent secondary structures of α - helices. This universal phenomenon may point to the potential nanotoxicity of MoS2 when used in biological systems. Moreover, these results aligned well with previous findings on the potential cytotoxicity of TMD nanomaterials.


Subject(s)
Disulfides/chemistry , Molecular Dynamics Simulation , Molybdenum/chemistry , Nanostructures/chemistry , Peptides/chemistry , Hydrogen Bonding , Protein Folding , Protein Structure, Secondary
18.
J Chem Phys ; 141(22): 22D520, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25494791

ABSTRACT

Clearance of partially ordered oligomers and monomers deposited on cell membrane surfaces is believed to be an effective route to alleviate many potential protein conformational diseases (PCDs). With large-scale all-atom molecular dynamics simulations, here we show that graphene nanosheets can easily and quickly win a competitive adsorption of human islet amyloid polypeptides (hIAPP22-28) NFGAILS and associated fibrils against cell membrane, due to graphene's unique two-dimensional, highly hydrophobic surface with its all-sp(2) hybrid structure. A nanoscale dewetting transition was observed at the interfacial region between the fibril (originally deposited on the membrane) and the graphene nanosheet, which significantly assisted the adsorption of fibrils onto graphene from the membrane. The π-π stacking interaction between Phe23 and graphene played a crucial role, providing the driving force for the adsorption at the graphene surface. This study renders new insight towards the importance of water during the interactions between amyloid peptides, the phospholipidic membrane, and graphene, which might shed some light on future developments of graphene-based nanomedicine for preventing/curing PCDs like type II diabetes mellitus.


Subject(s)
Amyloid/isolation & purification , Cell Membrane/chemistry , Graphite/chemistry , Islet Amyloid Polypeptide/isolation & purification , Nanostructures/chemistry , Adsorption , Amyloid/chemistry , Humans , Islet Amyloid Polypeptide/chemistry , Molecular Dynamics Simulation , Wettability
19.
Sci Rep ; 14(1): 6298, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491099

ABSTRACT

Environmental water contamination, particularly by heavy metal ions, has emerged as a worldwide concern due to their non-biodegradable nature and propensity to accumulate in soil and living organisms, posing a significant risk to human health. Therefore, the effective removal of heavy metal ions from wastewater is of utmost importance for both public health and environmental sustainability. In this study, we propose and design a membrane consisting of fluorographene (F-GRA) nanochannels to investigate its heavy metal ion removal capacity through molecular dynamics simulation. Although many previous studies have revealed the good performance of lamellar graphene membranes for desalination, how the zero-charged graphene functionalized by fluorine atoms (fully covered by negative charges) affects the heavy metal ion removal capacity is still unknown. Our F-GRA membrane exhibits an exceptional water permeability accompanied by an ideal heavy metal ion rejection rate. The superior performance of F-GRA membrane in removing heavy metal ions can be attributed to the negative charge of the F-GRA surface, which results in electrostatic attraction to positively charged ions that facilitates the optimal ion capture. Our analysis of the potential of mean force further reveals that water molecule exhibits the lowest free energy barrier relative to ions when passing through the F-GRA channel, indicating that water transport is energetically more favorable than ion. Additional simulations of lamellar graphene membranes show that graphene membranes have higher water permeabilities compared with F-GRA membranes, while robustly compromising the heavy meal ion rejection rates, and thus F-GRA membranes show better performances. Overall, our theoretical research offers a potential design approach of F-GRA membrane for heavy metal ions removal in future industrial wastewater treatment.

20.
Sci Rep ; 14(1): 7091, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38528032

ABSTRACT

Graphene quantum dots (GQDs) have attracted significant attention in biomedicine, while extensive investigations have revealed a reverse regarding the potential biotoxicity of GQDs. In order to supplementing the understanding of the toxicity profile of GQDs, this study employs a molecular dynamics (MD) simulation approach to systematically investigate the potential toxicity of both GQDs and Graphene Oxide Quantum Dots (GOQDs) on the Anterior Gradient Homolog 2 (AGR2) protein, a key protein capable of protecting the intestine. We construct two typical simulation systems, in which an AGR2 protein is encircled by either GQDs or GOQDs. The MD results demonstrate that both GQDs and GOQDs can directly make contact with and even cover the active site (specifically, the Cys81 amino acid) of the AGR2 protein. This suggests that GQDs and GOQDs have the capability to inhibit or interfere with the normal biological interaction of the AGR2 active site with its target protein. Thus, GQDs and GOQDs exhibit potential detrimental effects on the AGR2 protein. Detailed analyses reveal that GQDs adhere to the Cys81 residue due to van der Waals (vdW) interaction forces, whereas GOQDs attach to the Cys81 residue through a combination of vdW (primary) and Coulomb (secondary) interactions. Furthermore, GQDs aggregation typically adsorb onto the AGR2 active site, while GOQDs adsorb to the active site of AGR2 one by one. Consequently, these findings shed new light on the potential adverse impact of GQDs and GOQDs on the AGR2 protein via directly covering the active site of AGR2, providing valuable molecular insights for the toxicity profile of GQD nanomaterials.


Subject(s)
Graphite , Mucoproteins , Quantum Dots , Catalytic Domain , Graphite/toxicity , Graphite/chemistry , Molecular Dynamics Simulation , Oxides , Quantum Dots/toxicity , Quantum Dots/chemistry , Mucoproteins/metabolism , Oncogene Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL