Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685987

ABSTRACT

Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.


Subject(s)
Clusterin , Eye Diseases , Neoplasms , Animals , Humans , Male , Cell Communication , Clusterin/genetics , Eye Diseases/genetics , Neoplasms/genetics , Semen , Sheep , Wound Healing
2.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768144

ABSTRACT

In our experience, keratinocytes cultured in feeder-free conditions and in commercially available defined and serum-free media cannot be as efficiently massively expanded as their counterparts grown in conventional bovine serum-containing medium, nor can they properly form a stratified epidermis in a skin substitute model. We thus tested a new chemically defined serum-free medium, which we developed for massive human primary keratinocyte expansion and skin substitute production. Our medium, named Surge Serum-Free Medium (Surge SFM), was developed to be used alongside a feeder layer. It supports the growth of keratinocytes freshly isolated from a skin biopsy and cryopreserved primary keratinocytes in cultured monolayers over multiple passages. We also show that keratin-19-positive epithelial stem cells are retained through serial passaging in Surge SFM cultures. Transcriptomic analyses suggest that gene expression is similar between keratinocytes cultured with either Surge SFM or the conventional serum-containing medium. Additionally, Surge SFM can be used to produce bilayered self-assembled skin substitutes histologically similar to those produced using serum-containing medium. Furthermore, these substitutes were grafted onto athymic mice and persisted for up to six months. In conclusion, our new chemically defined serum-free keratinocyte culture medium shows great promise for basic research and clinical applications.


Subject(s)
Keratinocytes , Tissue Engineering , Animals , Mice , Humans , Keratinocytes/metabolism , Skin/metabolism , Epidermis/metabolism , Epidermal Cells , Culture Media, Serum-Free/pharmacology , Cells, Cultured
3.
J Cell Physiol ; 237(5): 2434-2450, 2022 05.
Article in English | MEDLINE | ID: mdl-35150137

ABSTRACT

Due to its superficial anatomical localization, the cornea is continuously subjected to injuries. Damages to the corneal epithelium trigger important changes in the composition of the extracellular matrix to which the basal human corneal epithelial cells (hCECs) attach. These changes are perceived by membrane-bound integrins and ultimately lead to re-epithelialization of the injured epithelium through intracellular signalin. Among the many downstream targets of the integrin-activated signaling pathways, WNK1 is the kinase whose activity is the most strongly increased during corneal wound healing. We previously demonstrated that pharmacological inhibition of WNK1 prevents proper closure of wounded human tissue-engineered cornea in vitro. In the present study, we investigated the molecular mechanisms by which WNK1 contributes to corneal wound healing. By exploiting transcription factors microarrays, electrophoretic mobility-shift assay, and gene profiling analyses, we demonstrated that the DNA binding properties and expression of numerous transcription factors (TFs), including the well-known, ubiquitous TFs specific protein 1 (Sp1) and activator protein 1 (AP1), were reduced in hCECs upon WNK1 inhibition by WNK463. This process appears to be mediated at least in part by alteration in both the ubiquitination and glycosylation status of these TFs. These changes in TFs activity and expression impacted the transcription of several genes, including that encoding the α5 integrin subunit, a well-known target of both Sp1 and AP1. Gene profiling revealed that only a moderate number of genes in hCECs had their level of expression significantly altered in response to WNK463 exposition. Interestingly, analysis of the microarray data for these deregulated genes using the ingenuity pathway analysis software predicted that hCECs would stop migrating and proliferating but differentiate more when they are grown in the presence of the WNK1 inhibitor. These results demonstrate that WNK1 plays a critical function by orienting hCECs into the appropriate biological response during the process of corneal wound healing.


Subject(s)
Corneal Injuries , Epithelium, Corneal , Corneal Injuries/metabolism , Epithelial Cells/metabolism , Epithelium, Corneal/metabolism , Humans , Transcription Factor AP-1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Wound Healing/genetics
4.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163491

ABSTRACT

Uveal melanoma (UM) remains the most common intraocular malignancy among diseases affecting the adult eye. The primary tumor disseminates to the liver in half of patients and leads to a 6 to 12-month survival rate, making UM a particularly aggressive type of cancer. Genomic analyses have led to the development of gene-expression profiles that can efficiently predict metastatic progression. Among these genes, that encoding the serotonin receptor 2B (HTR2B) represents the most discriminant from this molecular signature, its aberrant expression being the hallmark of UM metastatic progression. Recent evidence suggests that expression of HTR2B might be regulated through the Janus kinase/Signal Transducer and Activator of Transcription proteins (JAK/STAT) intracellular signalization pathway. However, little is actually known about the molecular mechanisms involved in the abnormally elevated expression of the HTR2B gene in metastatic UM and whether activated STAT proteins participates to this mechanism. In this study, we determined the pattern of STAT family members expressed in both primary tumors and UM cell-lines, and evaluated their contribution to HTR2B gene expression. Examination of the HTR2B promoter sequence revealed the presence of a STAT putative target site (5'-TTC (N)3 GAA3') located 280 bp upstream of the mRNA start site that is completely identical to the high affinity binding site recognized by these TFs. Gene profiling on microarrays provided evidence that metastatic UM cell lines with high levels of HTR2B also express high levels of STAT proteins whereas low levels of these TFs are observed in non-metastatic UM cells with low levels of HTR2B, suggesting that STAT proteins contribute to HTR2B gene expression in UM cells. All UM cell lines tested were found to express their own pattern of STAT proteins in Western blot analyses. Furthermore, T142 and T143 UM cells responded to interleukins IL-4 and IL-6 by increasing the phosphorylation status of STAT1. Most of all, expression of HTR2B also considerably increased in response to both IL-4 and IL-6 therefore providing evidence that HTR2B gene expression is modulated by STAT proteins in UM cells. The binding of STAT proteins to the -280 HTR2B/STAT site was also demonstrated by electrophoretic mobility shift assay (EMSA) analyses and site-directed mutation of that STAT site also abolished both IL-4 and IL-6 responsiveness in in vitro transfection analyses. The results of this study therefore demonstrate that members from the STAT family of TFs positively contribute to the expression of HTR2B in uveal melanoma.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/metabolism , Receptor, Serotonin, 5-HT2B/genetics , STAT Transcription Factors/metabolism , Uveal Neoplasms/metabolism , 5' Flanking Region/genetics , Cell Line, Tumor , DNA/metabolism , Humans , Interleukin-4/pharmacology , Interleukin-6/pharmacology , Nuclear Proteins/metabolism , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , Protein Isoforms/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , STAT Transcription Factors/genetics
5.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293057

ABSTRACT

Corneal wound healing involves communication between the different cell types that constitute the three cellular layers of the cornea (epithelium, stroma and endothelium), a process ensured in part by a category of extracellular vesicles called exosomes. In the present study, we isolated exosomes released by primary cultured human corneal epithelial cells (hCECs), corneal fibroblasts (hCFs) and corneal endothelial cells (hCEnCs) and determined whether they have wound healing characteristics of their own and to which point they modify the genetic and proteomic pattern of these cell types. Exosomes released by all three cell types significantly accelerated wound closure of scratch-wounded hCECs in vitro compared to controls (without exosomes). Profiling of activated kinases revealed that exosomes from human corneal cells caused the activation of signal transduction mediators that belong to the HSP27, STAT, ß-catenin, GSK-3ß and p38 pathways. Most of all, data from gene profiling analyses indicated that exosomes, irrespective of their cellular origin, alter a restricted subset of genes that are completely different between each targeted cell type (hCECs, hCFS, hCEnCs). Analysis of the genes specifically differentially regulated for a given cell-type in the microarray data using the Ingenuity Pathway Analysis (IPA) software revealed that the mean gene expression profile of hCECs cultured in the presence of exosomes would likely promote cell proliferation and migration whereas it would reduce differentiation when compared to control cells. Collectively, our findings represent a conceptual advance in understanding the mechanisms of corneal wound repair that may ultimately open new avenues for the development of novel therapeutic approaches to improve closure of corneal wounds.


Subject(s)
Corneal Injuries , Exosomes , Humans , Exosomes/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Endothelial Cells/metabolism , HSP27 Heat-Shock Proteins/metabolism , Proteomics , Wound Healing/physiology , Cornea/metabolism , Corneal Injuries/metabolism , Epithelial Cells/metabolism , Cell Movement
6.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830308

ABSTRACT

In order to reduce the need for donor corneas, understanding of corneal wound healing and development of an entirely tissue-engineered human cornea (hTECs) is of prime importance. In this study, we exploited the hTEC to determine how deep wound healing affects the transcriptional pattern of corneal epithelial cells through microarray analyses. We demonstrated that the gene encoding clusterin (CLU) has its expression dramatically repressed during closure of hTEC wounds. Western blot analyses confirmed a strong reduction in the expression of the clusterin isoforms after corneal damage and suggest that repression of CLU gene expression might be a prerequisite to hTEC wound closure. Transfection with segments from the human CLU gene promoter revealed the presence of three regulatory regions: a basal promoter and two more distal negative regulatory regions. The basal promoter bears DNA binding sites for very potent transcription factors (TFs): Activator Protein-1 (AP-1) and Specificity protein-1 and 3 (Sp1/Sp3). By exploiting electrophoretic mobility shift assays (EMSA), we demonstrated that AP-1 and Sp1/Sp3 have their DNA binding site overlapping with one another in the basal promoter of the CLU gene in hCECs. Interestingly, expression of both these TFs is reduced (at the protein level) during hTEC wound healing, thereby contributing to the extinction of CLU gene expression during that process. The results of this study contribute to a better understanding of the molecular mechanisms accounting for the repression of CLU gene expression during corneal wound healing.


Subject(s)
Clusterin/genetics , Epithelial Cells/metabolism , Epithelium, Corneal/cytology , Gene Expression , Signal Transduction/genetics , Sp1 Transcription Factor/metabolism , Sp3 Transcription Factor/metabolism , Tissue Engineering/methods , Transcription Factor AP-1/metabolism , Wound Healing/genetics , Adult , Aged , Cells, Cultured , Child , Clusterin/metabolism , Epithelium, Corneal/metabolism , Fibroblasts/metabolism , Humans , Middle Aged , Promoter Regions, Genetic , Tissue Donors , Transfection
7.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525484

ABSTRACT

Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.


Subject(s)
Cornea/cytology , Corneal Injuries/therapy , Occupational Injuries/therapy , Tissue Engineering/methods , Corneal Transplantation , Humans , Models, Biological , Tissue Scaffolds
8.
Exp Eye Res ; 184: 72-77, 2019 07.
Article in English | MEDLINE | ID: mdl-31002821

ABSTRACT

Uveal melanoma (UM), although a very rare disease, remains a particularly aggressive type of cancer as near 50% of the UM presenting patients will also develop liver metastases within 15 years from the initial diagnostic. One of the most reliable predictive markers of UM at risk of evolving toward the formation of liver lesions is an abnormally elevated level of expression of the transcript encoding the 5-Hydroxytryptamine (serotonin) receptor 2B (HTR2B). In our previous study, we demonstrated that transcription of the HTR2B gene was under the regulatory influences of two transcription factors (TFs), NFI and RUNX1. However, the action of these TFs was insufficient to explain the elevated level of the HTR2B protein in metastatic UM cells or the discrepancies we observed between its expression at the transcriptional and protein levels, therefore suggesting that additional post-translational modifications may also contribute to the altered expression of HTR2B in UM cells. In the present study, we investigated whether the turnover of HTR2B by the proteasome could account at least in part for its deregulated expression. Microarray analyses performed with UM cell lines derived from both non-metastatic and metastatic UM primary tumors revealed important alterations in the expression of some of the transcripts encoding both the E3 ubiquitin ligases and the various subunits of the proteasome, and these modifications were further exacerbated by cell passaging in culture. These alterations also correlated with significant changes in the enzymatic activity of the proteasome. However, the highest proteasome activity and amount of ubiquitinated HTR2B observed in the metastatic T142 cell line, as revealed by immunoprecipitation of ubiquitinated proteins and Western blotting using the HTR2B antibody, apparently had little impact on the total content of HTR2B protein. This contrasts with the near total disappearance of this receptor in the non-metastatic T108 cell line. Our study therefore suggests that the inability of the proteasome to degrade HTR2B in metastatic UM cells might rely on an increased stability of the ubiquitinated receptor in these cells.


Subject(s)
Melanoma/metabolism , Proteasome Endopeptidase Complex/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Uveal Neoplasms/metabolism , Adolescent , Adult , Aged , Blotting, Western , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunoprecipitation , Male , Melanoma/genetics , Middle Aged , Proteasome Endopeptidase Complex/genetics , Uveal Neoplasms/genetics
9.
Int J Mol Sci ; 20(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847118

ABSTRACT

Because of the worldwide shortage of graftable corneas, alternatives to restore visual impairments, such as the production of a functional human cornea by tissue engineering, have emerged. Self-renewal of the corneal epithelium through the maintenance of a sub-population of corneal stem cells is required to maintain the functionality of such a reconstructed cornea. We previously reported an association between stem cell differentiation and the level to which they express the transcription factors Sp1 and NFI. In this study, we investigated the impact of replacing irradiated 3T3 (i3T3) murine fibroblast feeder cells by irradiated human corneal fibroblasts (iHFL) on the expression of Sp1 and NFI and evaluated their contribution to the proliferative properties of human corneal epithelial cells (hCECs) in both monolayer cultures and human tissue engineered corneas (hTECs). hCECs co-cultured with iHFL could be maintained for up to two more passages than when they were grown with i3T3. Western Blot and electrophoretic mobility shift assays (EMSAs) revealed no significant difference in the feeder-layer dependent increase in Sp1 at both the protein and DNA binding level, respectively, between HCECs grown with either i3T3 or iHFL. On the other hand, a significant increase in the expression and DNA binding of NFI was observed at each subsequent passage when hCECs were co-cultured along with i3T3. These changes were found to result from an increased expression of the NFIA and NFIB isoforms in hCECs grown with i3T3. Exposure of hCECs to cycloheximide revealed an increased stability of NFIB that likely resulted from post-translational glycosylation of this protein when these cells were co-cultured with i3T3. In addition, iHFL were as efficient as i3T3 at preserving corneal, slow-cycling, epithelial stem cells in the basal epithelium of the reconstructed hTECs. Furthermore, we observed an increased expression of genes whose encoded products promote hCECs differentiation along several passages in hCECs co-cultured with either type of feeder layer. Therefore, the iHFL feeder layer appears to be the most effective at maintaining the proliferative properties of hCECs in culture most likely by preserving high levels of Sp1 and low levels of NFIB, which is known for its gene repressor and cell differentiation properties.


Subject(s)
Epithelial Cells/metabolism , Epithelium, Corneal/metabolism , Feeder Cells/metabolism , Fibroblasts/metabolism , Stem Cells/metabolism , Tissue Engineering , 3T3 Cells , Animals , Cell Differentiation , Cell Proliferation , Coculture Techniques , Epithelial Cells/cytology , Epithelium, Corneal/cytology , Feeder Cells/cytology , Fibroblasts/cytology , Humans , Mice , Stem Cells/cytology
10.
Exp Eye Res ; 176: 161-173, 2018 11.
Article in English | MEDLINE | ID: mdl-30003884

ABSTRACT

Based on the use of tissue-cultured human corneal endothelial cells (HCECs), cell therapy is a very promising avenue in the treatment of corneal endothelial pathologies such as Fuchs' dystrophy, and post-surgical corneal edema. However, once in culture, HCECs rapidly lose their phenotypic and physiological characteristics, and are therefore unsuitable for the reconstruction of a functional endothelial monolayer. Expression of NFI, a transcription factor that can either function as an activator or a repressor of gene transcription, has never been examined in endothelial cells. The present study therefore aimed to determine the impact of a non-proliferating, lethally irradiated i3T3 feeder layer on the maintenance of HCEC's morphological characteristics, and both the expression and stability of Sp1 (a strong transcriptional activator) and NFI in such cells. The typical morphology of endothelial cells was best maintained when 8 × 103/cm2 HCECs were co-cultured in the presence of 2 × 104 cells/cm2 i3T3. HCECs were found to express both Sp1 and NFI in vitro. Also, the presence of i3T3 led to higher levels of Sp1 and NFI in HCECs, with a concomitant increase in their DNA binding levels (assessed by electrophoretic mobility shift assays (EMSA)). Specifically, i3T3 increased the expression of the NFIA, NFIB and NFIC isoforms, without a noticeable increase in their mRNAs (as revealed by gene profiling on microarray). Gene profiling analysis also identified a few feeder layer-dependent, differentially regulated genes whose protein products may contribute to improving the properties of HCECs in culture. Therefore, co-culturing HCECs with an i3T3 feeder layer clearly improves their morphological characteristics by maintaining stable levels of Sp1 and NFI in cell culture.


Subject(s)
Cell Proliferation/physiology , Endothelium, Corneal/cytology , Endothelium, Corneal/metabolism , Feeder Cells/physiology , NFI Transcription Factors/metabolism , Sp1 Transcription Factor/metabolism , 3T3 Cells , Adolescent , Animals , Blotting, Western , Coculture Techniques , Electrophoretic Mobility Shift Assay , Fluorescent Antibody Technique, Indirect , Gene Expression Profiling , Humans , Infant , Mice , NFI Transcription Factors/genetics , Real-Time Polymerase Chain Reaction , Sp1 Transcription Factor/genetics , Young Adult
11.
Int J Mol Sci ; 19(10)2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30347896

ABSTRACT

Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B- but not in HTR23B⁺ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Melanoma/genetics , NFI Transcription Factors/metabolism , Receptor, Serotonin, 5-HT2B/genetics , Uveal Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Melanoma/metabolism , Promoter Regions, Genetic , Protein Binding , Receptor, Serotonin, 5-HT2B/metabolism , Uveal Neoplasms/metabolism
12.
Int J Mol Sci ; 19(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261611

ABSTRACT

Psoriasis is a chronic inflammatory skin disease for which no cure has emerged. Its complex etiology requires the development of an in vitro model representative of the pathology. In this study, we exploited gene profiling analyses on microarray in order to characterize and further optimize the production of a human psoriatic skin model representative of this in vivo skin disease. Various skin substitutes were produced by tissue-engineering using biopsies from normal, healthy donors, or from lesional or non-lesional skin samples from patients with psoriasis, and their gene expression profiles were examined by DNA microarray. We demonstrated that more than 3540 and 1088 genes (two-fold change) were deregulated between healthy/lesional and lesional/non-lesional psoriatic substitutes, respectively. Moreover, several genes related to lipid metabolism, such as PLA2G4E and PLA2G4C, were identified as repressed in the lesional substitutes. In conclusion, gene profiling analyses identified a list of deregulated candidate genes associated with various metabolic pathways that may contribute to the progression of psoriasis.


Subject(s)
Gene Expression Profiling/methods , Psoriasis/genetics , Skin, Artificial , Skin/metabolism , Tissue Engineering/methods , Adolescent , Adult , Aged , Cells, Cultured , Cytokines/genetics , Gene Ontology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Middle Aged , Skin/pathology , Young Adult
13.
J Cell Physiol ; 230(2): 308-17, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24962522

ABSTRACT

The growth of primary keratinocytes is improved by culturing them with a feeder layer. The aim of this study was to assess whether the feeder layer increases the lifespan of cultured epithelial cells by maintaining or improving telomerase activity and expression. The addition of an irradiated fibroblast feeder layer of either human or mouse origin (i3T3) helped maintain telomerase activity as well as expression of the transcription factor Sp1 in cultured keratinocytes. In contrast, senescence occurred earlier, together with a reduction of Sp1 expression and telomerase activity, in keratinocytes cultured without a feeder layer. Telomerase activity was consistently higher in keratinocytes grown on the three different feeder layers tested relative to cells grown without them. Suppression of Sp1 expression by RNA inhibition (RNAi) reduced both telomerase expression and activity in keratinocytes and also abolished their long-term growth capacity suggesting that Sp1 is a key regulator of both telomerase gene expression and cell cycle progression of primary cultured human skin keratinocytes. The results of the present study therefore suggest that the beneficial influence of the feeder layer relies on its ability to preserve telomerase activity in cultured human keratinocytes through the maintenance of stable levels of Sp1 expression.


Subject(s)
Feeder Cells/enzymology , Fibroblasts/metabolism , Keratinocytes/enzymology , Skin/metabolism , Sp1 Transcription Factor/metabolism , Telomerase/metabolism , Adult , Aged, 80 and over , Animals , Cells, Cultured , Child, Preschool , Coculture Techniques , Feeder Cells/cytology , Humans , Keratinocytes/cytology , Middle Aged , Skin/cytology
14.
Exp Eye Res ; 135: 146-63, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25746835

ABSTRACT

α9ß1 is the most recent addition to the integrin family of membrane receptors and consequently remains the one that is the least characterized. To better understand how transcription of the human gene encoding the α9 subunit is regulated, we cloned the α9 promoter and characterized the regulatory elements that are required to ensure its transcription. Transfection of α9 promoter/CAT plasmids in primary cultured human corneal epithelial cells (HCECs) and uveal melanoma cell lines demonstrated the presence of both negative and positive regulatory elements along the α9 promoter and positioned the basal α9 promoter to within 118 bp from the α9 mRNA start site. In vitro DNaseI footprinting and in vivo ChIP analyses demonstrated the binding of the transcription factors Sp1, c-Myb and NFI to the most upstream α9 negative regulatory element. The transcription factors Sp1 and NFI were found to bind the basal α9 promoter individually but Sp1 binding clearly predominates when both transcription factors are present in the same extract. Suppression of Sp1 expression through RNAi also caused a dramatic reduction in the expression of the α9 gene. Most of all, addition of tenascin-C (TNC), the ligand of α9ß1, to the tissue culture plates prior to seeding HCECs increased α9 transcription whereas it simultaneously decreased expression of the α5 integrin subunit gene. This dual regulatory action of TNC on the transcription of the α9 and α5 genes suggests that both these integrins must work together to appropriately regulate cell adhesion, migration and differentiation that are hallmarks of tissue wound healing.


Subject(s)
Epithelium, Corneal/cytology , Gene Expression Regulation/physiology , Integrin alpha Chains/physiology , Promoter Regions, Genetic/physiology , Cells, Cultured , Epithelial Cells/metabolism , Epithelium, Corneal/metabolism , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Integrin alpha Chains/genetics , NFI Transcription Factors/metabolism , Sp1 Transcription Factor/metabolism , Sp3 Transcription Factor/metabolism , Transfection
15.
Cells ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38920653

ABSTRACT

Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Uveal Neoplasms/diagnosis , Melanoma/genetics , Melanoma/therapy , Melanoma/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Tumor Microenvironment/genetics , Mutation/genetics
16.
Int J Mol Sci ; 14(3): 4684-704, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23443166

ABSTRACT

A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3) can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes.

17.
Cells ; 11(18)2022 09 16.
Article in English | MEDLINE | ID: mdl-36139479

ABSTRACT

Psoriasis is a complex, immune-mediated skin disease involving a wide range of epithelial and immune cells. The underlying mechanisms that govern the epidermal defects and immunological dysfunction observed in this condition remain largely unknown. In recent years, the emergence of new, more sophisticated models has allowed the evolution of our knowledge of the pathogenesis of psoriasis. The development of psoriatic skin biomaterials that more closely mimic native psoriatic skin provides advanced preclinical models that will prove relevant in predicting clinical outcomes. In this study, we used a tissue-engineered, two-layered (dermis and epidermis) human skin substitute enriched in T cells as a biomaterial to study both the cellular and molecular mechanisms involved in psoriasis' pathogenesis. Gene profiling on microarrays revealed significant changes in the profile of genes expressed by the psoriatic skin substitutes compared with the healthy ones. Two genes, namely, PTPRM and NELL2, whose products influence the ERK1/2 signaling pathway have been identified as being deregulated in psoriatic substitutes. Deregulation of these genes supports excessive activation of the ERK1/2 pathway in psoriatic skin substitutes. Most importantly, electrophoresis mobility shift assays provided evidence that the DNA-binding properties of two downstream nuclear targets of ERK1/2, both the NF-κB and Sp1 transcription factors, are increased under psoriatic conditions. Moreover, the results obtained with the inhibition of RSK, a downstream effector of ERK1/2, supported the therapeutic potential of inhibiting this signaling pathway for psoriasis treatment. In conclusion, this two-layered human psoriatic skin substitute enriched in T cells may prove particularly useful in deciphering the mechanistic details of psoriatic pathogenesis and provide a relevant biomaterial for the study of potential therapeutic targets.


Subject(s)
Keratinocytes , Psoriasis , Antigen-Antibody Complex/analysis , Antigen-Antibody Complex/genetics , Antigen-Antibody Complex/metabolism , Biocompatible Materials/therapeutic use , Cell Proliferation/genetics , DNA/metabolism , Down-Regulation , Humans , Keratinocytes/metabolism , MAP Kinase Signaling System , NF-kappa B/metabolism , Psoriasis/drug therapy , Receptor-Like Protein Tyrosine Phosphatases, Class 2/analysis , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Signal Transduction , T-Lymphocytes
18.
Cells ; 11(17)2022 08 31.
Article in English | MEDLINE | ID: mdl-36078126

ABSTRACT

Besides being a powerful model to study the mechanisms of corneal wound healing, tissue-engineered human corneas (hTECs) are sparking interest as suitable substitutes for grafting purposes. To ensure the histological and physiological integrity of hTECs, the primary cultures generated from human cornea (identified as human limbal epithelial cells (hLECs) that are used to produce them must be of the highest possible quality. The goal of the present study consisted in evaluating the impact of the postmortem/storage time (PM/ST) on their properties in culture. hLECs were isolated from the entire cornea comprising the limbus and central cornea. When grown as monolayers, short PM/ST hLECs displayed increased daily doublings and generated more colonies per seeded cells than long PM/ST hLECs. Moreover, hLECs with a short PM/ST exhibited a markedly faster wound closure kinetic both in scratch wound assays and hTECs. Collectively, these results suggest that short PM/ST hLECs have a greater number of highly proliferative stem cells, exhibit a faster and more efficient wound healing response in vitro, and produce hTECs of a higher quality, making them the best candidates to produce biomaterial substitutes for clinical studies.


Subject(s)
Cornea , Stem Cells , Cells, Cultured , Cornea/pathology , Epithelial Cells , Humans , Tissue Engineering/methods
19.
Mol Vis ; 17: 1324-33, 2011.
Article in English | MEDLINE | ID: mdl-21647268

ABSTRACT

PURPOSE: Uveal melanoma (UM) is the most common primary cancer of the eye, resulting not only in vision loss, but also in metastatic death. This study attempts to identify changes in the patterns of gene expression that lead to malignant transformation and proliferation of normal uveal melanocytes (UVM) using the Suppressive Subtractive Hybridization (SSH) technique. METHODS: The SSH technique was used to isolate genes that are differentially expressed in the TP31 cell line derived from a primary UM compared to UVM. The expression level of selected genes was further validated by microarray, semi-quantitative RT-PCR and western blot analyses. RESULTS: Analysis of the subtracted libraries revealed that 37 and 36 genes were, respectively, up- and downregulated in TP31 cells compared to UVM. Differential expression of the majority of these genes was confirmed by comparing UM cells with UVM by microarray. The expression pattern of selected genes was analyzed by semi-quantitative RT-PCR and western blot, and was found to be consistent with the SSH findings. CONCLUSIONS: We demonstrated that the SSH technique is efficient to detect differentially expressed genes in UM. The genes identified in this study represent valuable candidates for further functional analysis in UM and should be informative in studying the biology of this tumor.


Subject(s)
Comparative Genomic Hybridization/methods , Eye/pathology , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Melanocytes/metabolism , Melanoma , Uveal Neoplasms , Adult , Aged , Blotting, Western , Cell Culture Techniques , Cell Line, Tumor , Down-Regulation , Eye/metabolism , Female , Gene Expression Profiling , Humans , Melanoma/genetics , Melanoma/pathology , Middle Aged , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology
20.
Acta Biomater ; 136: 210-222, 2021 12.
Article in English | MEDLINE | ID: mdl-34547515

ABSTRACT

Psoriasis is a chronic inflammatory skin disease involving several cell types, including T cells, via the IL-23/IL-17 axis. IL-17A acts on the surrounding epithelial cells thus resulting in an inflammatory feedback loop. The development of immunocompetent models that correctly recapitulate the complex phenotype of psoriasis remains challenging, which also includes both the T cell isolation and activation methods. The purpose of this work was to develop an advanced in vitro 3D psoriatic skin model that enables the study of the impact of T cells on psoriatic epithelial cells. To reach that aim, healthy and psoriatic fibroblasts and keratinocytes were used to reproduce this tissue-engineered skin model in which activated T cells, isolated beforehand from human whole blood, have been incorporated. Our study showed that isolation of T cells with the EasySep procedure, followed by activation with PMA/ionomycin, mimicked the psoriatic characteristics in an optimal manner with the production of inflammatory cytokines important in the pathogenesis of psoriasis, as well as increased expression of Ki67, S100A7, elafin and involucrin. This psoriatic model enriched in activated T cells displayed enhanced production of IL-17A, IFN-Æ´, CCL2, CXCL10, IL-1ra, IL-6 and CXCL8 compared with the healthy model and whose increased secretion was maintained over time. In addition, anti-IL17A treatment restored some psoriatic features, including epidermal thickness and basal keratinocytes proliferation, as well as a downregulation of S100A7, elafin and involucrin expression. Altogether, our study demonstrated that this model reflects a proper psoriatic inflammatory environment and is effective for the investigation of epidermal and T cell interaction over time. STATEMENT OF SIGNIFICANCE: The aim of this study was to provide an innovative 3D immunocompetent human psoriatic skin model. To our knowledge, this is the first immunocompetent model that uses skin cells from psoriatic patients to study the impact of IL-17A on pathological cells. Through the use of this model, we demonstrated that the T-cell enriched psoriatic model differs from T-cell enriched healthy model, highlighting efficient crosstalk between pathologic epithelial cells and T cells. This advanced preclinical model further mimics the original psoriatic skin and will prove relevant in predicting clinical outcomes, thereby decreasing inaccurate predictions of compound effects.


Subject(s)
Cell Culture Techniques, Three Dimensional/methods , Interleukin-17 , Keratinocytes/cytology , Psoriasis , T-Lymphocytes/cytology , Humans , Psoriasis/immunology , Skin
SELECTION OF CITATIONS
SEARCH DETAIL