Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 20(4): e2305613, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712119

ABSTRACT

Covalent organic frameworks (COFs) are a family of engaging membrane materials for molecular separation, which remain challenging to fabricate in the form of thin-film composite membranes due to slow crystal growth and insoluble powder. Here, an additive approach is presented to construct COF-based thin-film composite membranes in 10 min via COF oligomer coating onto poly(ether ether ketone) (PEEK)ultrafiltration membranes. By the virtue of ultra-thin liquid phase and liquid-solid interface-confined assembly, the COF oligomers are fast stacked up and grow along the interface with the solvent evaporation. Benefiting from the low out-plane resistance of COFs, COF@PEEK composite membranes exhibit high solvent permeances in a negative correlation with solvent viscosity. The well-defined pore structures enable high molecular sieving ability (Mw = 300 g mol-1 ). Besides, the COF@PEEK composite membranes possess excellent mechanical integrities and steadily operate for over 150 h in the condition of high-pressure cross flow. This work not only exemplifies the high-efficiency and scale-up preparation of COF-based thin-film composite membranes but also provides a new strategy for COF membrane processing.

2.
ACS Cent Sci ; 9(4): 733-741, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122458

ABSTRACT

High mass transport resistance within the catalyst layer is one of the major factors restricting the performance and low Pt loadings of proton exchange membrane fuel cells (PEMFCs). To resolve the issue, a novel partially ordered phosphonated ionomer (PIM-P) with both an intrinsic microporous structure and proton-conductive functionality was designed as the catalyst binder to improve the mass transport of electrodes. The rigid and contorted structure of PIM-P limits the free movement of the conformation and the efficient packing of polymer chains, resulting in the formation of a robust gas transmission channel. The phosphonated groups provide sites for stable proton conduction. In particular, by incorporating fluorinated and phosphonated groups strategically on the local side chains, an orderly stacking of molecular chains based on group assembly contributes to the construction of efficient mass transport pathways. The peak power density of the membrane electrode assembly with the PIM-P ionomer is 18-379% greater than that of those with commercial or porous catalyst binders at 160 °C under an H2/O2 condition. This study emphasizes the crucial role of ordered structure in the rapid conduction of polymers with intrinsic microporosity and provides a new idea for increasing mass transport at electrodes from the perspective of structural design instead of complex processes.

SELECTION OF CITATIONS
SEARCH DETAIL