Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters

Publication year range
1.
Cell ; 187(4): 861-881.e32, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38301646

ABSTRACT

Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.


Subject(s)
B7-H1 Antigen , DNA Helicases , Immunity, Innate , Melanoma , Tumor Escape , Animals , Mice , B7-H1 Antigen/metabolism , Genomic Instability , Melanoma/immunology , Melanoma/metabolism , DNA Helicases/metabolism
2.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33836156

ABSTRACT

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Subject(s)
COVID-19 Drug Treatment , DNA Topoisomerases, Type I/metabolism , SARS-CoV-2/metabolism , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Animals , COVID-19/enzymology , COVID-19/pathology , Chlorocebus aethiops , Humans , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/pathology , Inflammation/virology , Mesocricetus , Mice , Mice, Transgenic , THP-1 Cells , Vero Cells
3.
Cell ; 183(3): 786-801.e19, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33125893

ABSTRACT

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunity , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Nanotechnology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animals , Behavior, Animal , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Proliferation/drug effects , Cholesterol/metabolism , Female , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immunity/drug effects , Immunotherapy , Lipoproteins, HDL/metabolism , Mice, Inbred C57BL , Primates , Tissue Distribution/drug effects , Tumor Microenvironment/drug effects
4.
Nat Rev Mol Cell Biol ; 20(9): 567, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31375791

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Rev Mol Cell Biol ; 20(10): 642-657, 2019 10.
Article in English | MEDLINE | ID: mdl-31350521

ABSTRACT

Methylation of arginine residues by protein arginine methyltransferases (PRMTs) is involved in the regulation of fundamental cellular processes, including transcription, RNA processing, signal transduction cascades, the DNA damage response and liquid-liquid phase separation. Recent studies have provided considerable advances in the development of experimental tools and the identification of clinically relevant PRMT inhibitors. In this review, we discuss the regulation of PRMTs, their various cellular roles and the clinical relevance of PRMT inhibitors for the therapy of neurodegenerative diseases and cancer.


Subject(s)
Arginine/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction , Animals , Arginine/genetics , Humans , Methylation , Neoplasm Proteins/genetics , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics
6.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37995687

ABSTRACT

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Subject(s)
Endogenous Retroviruses , Endogenous Retroviruses/genetics , RNA, Nuclear , Epigenesis, Genetic , Heterochromatin , Gene Expression
7.
Nat Rev Mol Cell Biol ; 19(4): 245-261, 2018 04.
Article in English | MEDLINE | ID: mdl-29184195

ABSTRACT

Multiple cell-signalling pathways converge on chromatin to induce gene expression programmes. The inducible transcriptional programmes that are established as a result of inflammatory or oncogenic signals are controlled by shared chromatin regulators. Therapeutic targeting of such chromatin dependencies has proved effective for controlling tumorigenesis and for preventing immunopathologies that are driven by overt inflammation. In this Review, we discuss how chromatin dependencies are established to regulate the expression of key oncogenes and inflammation-promoting genes and how a better mechanistic understanding of such chromatin dependencies can be leveraged to improve the magnitude, timing, duration and selectivity of cell responses with the aim of minimizing unwanted cellular and systemic effects. Recently, exciting progress has been made in cancer immunotherapy and in the development of drugs that target chromatin regulators. We discuss recent advances in clinical trials and the challenge of combining immune-cell-based therapies and epigenetic therapies to improve human health.


Subject(s)
Chromatin/genetics , Inflammation/genetics , Neoplasms/genetics , Animals , Carcinogenesis/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Epigenesis, Genetic , Gene Expression/drug effects , Genetic Therapy , Humans , Inflammation/metabolism , Models, Genetic , Neoplasms/metabolism , Neoplasms/therapy , Signal Transduction/genetics , Transcription Factors/metabolism
8.
Cell ; 151(6): 1185-99, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23217706

ABSTRACT

Reprogramming of cellular metabolism is a key event during tumorigenesis. Despite being known for decades (Warburg effect), the molecular mechanisms regulating this switch remained unexplored. Here, we identify SIRT6 as a tumor suppressor that regulates aerobic glycolysis in cancer cells. Importantly, loss of SIRT6 leads to tumor formation without activation of known oncogenes, whereas transformed SIRT6-deficient cells display increased glycolysis and tumor growth, suggesting that SIRT6 plays a role in both establishment and maintenance of cancer. By using a conditional SIRT6 allele, we show that SIRT6 deletion in vivo increases the number, size, and aggressiveness of tumors. SIRT6 also functions as a regulator of ribosome metabolism by corepressing MYC transcriptional activity. Lastly, Sirt6 is selectively downregulated in several human cancers, and expression levels of SIRT6 predict prognosis and tumor-free survival rates, highlighting SIRT6 as a critical modulator of cancer metabolism. Our studies reveal SIRT6 to be a potent tumor suppressor acting to suppress cancer metabolism.


Subject(s)
Neoplasms/metabolism , Sirtuins/metabolism , Animals , Cell Proliferation , Down-Regulation , Fibroblasts/metabolism , Gene Knockout Techniques , Glycolysis , Humans , Mice , Mice, Nude , Mice, SCID , Neoplasm Transplantation , Proto-Oncogene Proteins c-myc/metabolism , Sirtuins/genetics , Transcription, Genetic , Transplantation, Heterologous , Tumor Suppressor Proteins/genetics
9.
Genes Dev ; 31(1): 12-17, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28115466

ABSTRACT

Global DNA demethylation is a hallmark of embryonic epigenetic reprogramming. However, embryos engage noncanonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional epigenetic germline features to the soma. Besides the paradigmatic genomic imprints, these exceptions remain ill-defined, and the mechanisms ensuring demethylation resistance in the light of global reprogramming remain poorly understood. Here we show that the Y-linked gene Rbmy1a1 is highly methylated in mature sperm and resists DNA demethylation post-fertilization. Aberrant hypomethylation of the Rbmy1a1 promoter results in its ectopic activation, causing male-specific peri-implantation lethality. Rbmy1a1 is a novel target of the TRIM28 complex, which is required to protect its repressive epigenetic state during embryonic epigenetic reprogramming.


Subject(s)
DNA Methylation/genetics , Embryonic Development/genetics , Epigenesis, Genetic/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Animals , Cells, Cultured , Cellular Reprogramming/genetics , Embryo Implantation/genetics , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Genomic Imprinting/genetics , Male , Mutation , Promoter Regions, Genetic/genetics , RNA-Binding Proteins/genetics , Spermatozoa/metabolism , Tripartite Motif-Containing Protein 28
10.
Gut ; 72(4): 736-748, 2023 04.
Article in English | MEDLINE | ID: mdl-35584893

ABSTRACT

OBJECTIVE: The diversity of the tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) has not been comprehensively assessed. We aimed to generate a novel molecular iCCA classifier that incorporates elements of the stroma, tumour and immune microenvironment ('STIM' classification). DESIGN: We applied virtual deconvolution to transcriptomic data from ~900 iCCAs, enabling us to devise a novel classification by selecting for the most relevant TME components. Murine models were generated through hydrodynamic tail vein injection and compared with the human disease. RESULTS: iCCA is composed of five robust STIM classes encompassing both inflamed (35%) and non-inflamed profiles (65%). The inflamed classes, named immune classical (~10%) and inflammatory stroma (~25%), differ in oncogenic pathways and extent of desmoplasia, with the inflammatory stroma showing T cell exhaustion, abundant stroma and KRAS mutations (p<0.001). Analysis of cell-cell interactions highlights cancer-associated fibroblast subtypes as potential mediators of immune evasion. Among the non-inflamed classes, the desert-like class (~20%) harbours the lowest immune infiltration with abundant regulatory T cells (p<0.001), whereas the hepatic stem-like class (~35%) is enriched in 'M2-like' macrophages, mutations in IDH1/2 and BAP1, and FGFR2 fusions. The remaining class (tumour classical: ~10%) is defined by cell cycle pathways and poor prognosis. Comparative analysis unveils high similarity between a KRAS/p19 murine model and the inflammatory stroma class (p=0.02). The KRAS-SOS inhibitor, BI3406, sensitises a KRAS-mutant iCCA murine model to anti-PD1 therapy. CONCLUSIONS: We describe a comprehensive TME-based stratification of iCCA. Cross-species analysis establishes murine models that align closely to human iCCA for the preclinical testing of combination strategies.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Animals , Mice , Disease Models, Animal , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Tumor Microenvironment
11.
Development ; 147(21)2020 11 05.
Article in English | MEDLINE | ID: mdl-33033118

ABSTRACT

Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene (RFX6) and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation RFX6 c.1129C>T, which revealed loss of the pancreas body and tail. From this foetus, we derived iPSCs and show that differentiation of these cells in vitro proceeds normally until generation of pancreatic endoderm, which is significantly reduced. We additionally generated an RFX6HA reporter allele by gene targeting in wild-type H9 cells to precisely define RFX6 expression and in parallel performed in situ hybridisation for RFX6 in the dorsal pancreatic bud of a Carnegie stage 14 human embryo. Both in vitro and in vivo, we find that RFX6 specifically labels a subset of PDX1-expressing pancreatic endoderm. In summary, RFX6 is essential for efficient differentiation of pancreatic endoderm, and its absence in individuals with MRS specifically impairs formation of endocrine cells of the pancreas head and tail.


Subject(s)
Cell Differentiation , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Endoderm/embryology , Gallbladder Diseases/genetics , Gallbladder Diseases/pathology , Induced Pluripotent Stem Cells/pathology , Intestinal Atresia/genetics , Intestinal Atresia/pathology , Mutation/genetics , Pancreas/embryology , Regulatory Factor X Transcription Factors/genetics , Alleles , Base Sequence , Cell Differentiation/genetics , Chromatin/metabolism , Consanguinity , Diabetes Mellitus/diagnostic imaging , Embryo, Mammalian/metabolism , Embryonic Development , Family , Female , Gallbladder Diseases/diagnostic imaging , Genome, Human , Humans , Induced Pluripotent Stem Cells/metabolism , Intestinal Atresia/diagnostic imaging , Male , Pedigree , Transcription, Genetic , Transcriptome/genetics , X-Ray Microtomography
12.
Genes Dev ; 29(21): 2312-24, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26545815

ABSTRACT

Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1(+); high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1(+); moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT(+)). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor-ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/physiology , Cell Differentiation , Gene Expression Regulation, Developmental , Genomic Imprinting/genetics , Transcription Factors/genetics , Animals , Cadherins/genetics , Cells, Cultured , DNA Methylation , Epigenomics , Gametogenesis/genetics , Gene Expression Profiling , Male , Mice , Receptors, Odorant/genetics , Signal Transduction/genetics , Thy-1 Antigens/metabolism
13.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674842

ABSTRACT

The PRDM family of methyltransferases has been implicated in cellular proliferation and differentiation and is deregulated in human diseases, most notably in cancer. PRDMs are related to the SET domain family of methyltransferases; however, from the 19 PRDMs only a few PRDMs with defined enzymatic activities are known. PRDM15 is an uncharacterized transcriptional regulator, with significant structural disorder and lack of defined small-molecule binding pockets. Many aspects of PRDM15 are yet unknown, including its structure, substrates, reaction mechanism, and its methylation profile. Here, we employ a series of computational approaches for an exploratory investigation of its potential substrates and reaction mechanism. Using the knowledge of PRDM9 and current knowledge of PRDM15 as basis, we tried to identify genuine substrates of PRDM15. We start from histone-based peptides and learn that the native substrates of PRDM15 may be non-histone proteins. In the future, a combination of sequence-based approaches and signature motif analysis may provide new leads. In summary, our results provide new information about the uncharacterized methyltransferase, PRDM15.


Subject(s)
Methyltransferases , Neoplasms , Humans , Methyltransferases/metabolism , Methylation , Histones/genetics , Histones/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Histone-Lysine N-Methyltransferase/metabolism
14.
Development ; 146(19)2019 07 10.
Article in English | MEDLINE | ID: mdl-30846446

ABSTRACT

Global epigenetic reprogramming is vital to purge germ cell-specific epigenetic features to establish the totipotent state of the embryo. This process transpires to be carefully regulated and is not an undirected, radical erasure of parental epigenomes. The TRIM28 complex has been shown to be crucial in embryonic epigenetic reprogramming by regionally opposing DNA demethylation to preserve vital parental information to be inherited from germline to soma. Yet the DNA-binding factors guiding this complex to specific targets are largely unknown. Here, we uncover and characterize a novel, maternally expressed, TRIM28-interacting KRAB zinc-finger protein: ZFP708. It recruits the repressive TRIM28 complex to RMER19B retrotransposons to evoke regional heterochromatin formation. ZFP708 binding to these hitherto unknown TRIM28 targets is DNA methylation and H3K9me3 independent. ZFP708 mutant mice are viable and fertile, yet embryos fail to inherit and maintain DNA methylation at ZFP708 target sites. This can result in activation of RMER19B-adjacent genes, while ectopic expression of ZFP708 results in transcriptional repression. Finally, we describe the evolutionary conservation of ZFP708 in mice and rats, which is linked to the conserved presence of the targeted RMER19B retrotransposons in these species.


Subject(s)
Epigenetic Repression , Repressor Proteins/metabolism , Retroelements/genetics , Zinc Fingers , Animals , Base Sequence , Binding Sites/genetics , Blastocyst/metabolism , DNA Methylation/genetics , Embryo, Mammalian/metabolism , Evolution, Molecular , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/metabolism , Protein Binding/genetics , Rats , Transcription, Genetic , Tripartite Motif-Containing Protein 28/metabolism
15.
Nat Chem Biol ; 16(2): 214-222, 2020 02.
Article in English | MEDLINE | ID: mdl-31819273

ABSTRACT

The enhancer of zeste homolog 2 (EZH2) is the main enzymatic subunit of the PRC2 complex, which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to promote transcriptional silencing. EZH2 is overexpressed in multiple types of cancer including triple-negative breast cancer (TNBC), and high expression levels correlate with poor prognosis. Several EZH2 inhibitors, which inhibit the methyltransferase activity of EZH2, have shown promise in treating sarcoma and follicular lymphoma in clinics. However, EZH2 inhibitors are ineffective at blocking proliferation of TNBC cells, even though they effectively reduce the H3K27me3 mark. Using a hydrophobic tagging approach, we generated MS1943, a first-in-class EZH2 selective degrader that effectively reduces EZH2 levels in cells. Importantly, MS1943 has a profound cytotoxic effect in multiple TNBC cells, while sparing normal cells, and is efficacious in vivo, suggesting that pharmacologic degradation of EZH2 can be advantageous for treating the cancers that are dependent on EZH2.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Enhancer of Zeste Homolog 2 Protein/metabolism , Piperazines/pharmacology , Pyridines/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Death/drug effects , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Gene Knockout Techniques , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred BALB C , Molecular Targeted Therapy , Proteolysis/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Unfolded Protein Response/drug effects , Xenograft Model Antitumor Assays
16.
J Am Soc Nephrol ; 32(3): 580-596, 2021 03.
Article in English | MEDLINE | ID: mdl-33593823

ABSTRACT

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.


Subject(s)
DNA-Binding Proteins/genetics , Hernia, Hiatal/genetics , Microcephaly/genetics , Mutation, Missense , Nephrosis/genetics , Transcription Factors/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Child, Preschool , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/deficiency , Female , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Models, Molecular , Nephrotic Syndrome/genetics , Podocytes/metabolism , Polymorphism, Single Nucleotide , Pronephros/embryology , Pronephros/metabolism , Protein Stability , Transcription Factors/chemistry , Transcription Factors/deficiency , Xenopus laevis/embryology , Xenopus laevis/genetics , Zinc Fingers/genetics
17.
Genes Dev ; 28(10): 1048-53, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24831700

ABSTRACT

The transcription cofactor MAL is regulated by free actin levels and thus by actin dynamics. MAL, together with its DNA-binding partner, SRF, is required for invasive cell migration and in experimental metastasis. Although MAL/SRF has many targets, we provide genetic evidence in both Drosophila and human cellular models that actin is the key target that must be regulated by MAL/SRF for invasive cell migration. By regulating MAL/SRF activity, actin protein feeds back on production of actin mRNA to ensure sufficient supply of actin. This constitutes a dedicated homeostatic feedback system that provides a foundation for cellular actin dynamics.


Subject(s)
Actins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Gene Expression Regulation, Neoplastic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Actins/metabolism , Animals , Cell Line, Tumor , Cell Movement , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila/cytology , Female , Homeostasis , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Serum Response Factor/metabolism , Trans-Activators , Transcriptome
18.
Nature ; 523(7558): 96-100, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25970242

ABSTRACT

Deregulated expression of the MYC transcription factor occurs in most human cancers and correlates with high proliferation, reprogrammed cellular metabolism and poor prognosis. Overexpressed MYC binds to virtually all active promoters within a cell, although with different binding affinities, and modulates the expression of distinct subsets of genes. However, the critical effectors of MYC in tumorigenesis remain largely unknown. Here we show that during lymphomagenesis in Eµ-myc transgenic mice, MYC directly upregulates the transcription of the core small nuclear ribonucleoprotein particle assembly genes, including Prmt5, an arginine methyltransferase that methylates Sm proteins. This coordinated regulatory effect is critical for the core biogenesis of small nuclear ribonucleoprotein particles, effective pre-messenger-RNA splicing, cell survival and proliferation. Our results demonstrate that MYC maintains the splicing fidelity of exons with a weak 5' donor site. Additionally, we identify pre-messenger-RNAs that are particularly sensitive to the perturbation of the MYC-PRMT5 axis, resulting in either intron retention (for example, Dvl1) or exon skipping (for example, Atr, Ep400). Using antisense oligonucleotides, we demonstrate the contribution of these splicing defects to the anti-proliferative/apoptotic phenotype observed in PRMT5-depleted Eµ-myc B cells. We conclude that, in addition to its well-documented oncogenic functions in transcription and translation, MYC also safeguards proper pre-messenger-RNA splicing as an essential step in lymphomagenesis.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma/physiopathology , Proto-Oncogene Proteins c-myc/metabolism , RNA Precursors/metabolism , RNA Splicing/physiology , Animals , Exons/genetics , HEK293 Cells , Humans , Introns/genetics , Mice , Oligonucleotides, Antisense/metabolism , Protein Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases , Proto-Oncogene Proteins c-myc/genetics
19.
Nucleic Acids Res ; 47(19): 10086-10103, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31529049

ABSTRACT

The metabolic sensor Per-Arnt-Sim (Pas) domain-containing serine/threonine kinase (PASK) is expressed predominantly in the cytoplasm of different cell types, although a small percentage is also expressed in the nucleus. Herein, we show that the nuclear PASK associates with the mammalian H3K4 MLL2 methyltransferase complex and enhances H3K4 di- and tri-methylation. We also show that PASK is a histone kinase that phosphorylates H3 at T3, T6, S10 and T11. Taken together, these results suggest that PASK regulates two different H3 tail modifications involving H3K4 methylation and H3 phosphorylation. Using muscle satellite cell differentiation and functional analysis after loss or gain of Pask expression using the CRISPR/Cas9 system, we provide evidence that some of the regulatory functions of PASK during development and differentiation may occur through the regulation of these histone modifications.


Subject(s)
DNA Methylation/genetics , DNA-Binding Proteins/genetics , Histones/genetics , Neoplasm Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Cell Differentiation/genetics , Cell Line , DNA-Binding Proteins/chemistry , HEK293 Cells , Histone Code/genetics , Histones/chemistry , Humans , Methyltransferases/genetics , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Neoplasm Proteins/chemistry , Phosphorylation/genetics , Protamine Kinase/chemistry , Protamine Kinase/genetics , Protein Serine-Threonine Kinases/chemistry , Satellite Cells, Skeletal Muscle/metabolism , Sequence Analysis, RNA
20.
Genes Dev ; 27(17): 1903-16, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24013503

ABSTRACT

The tight control of gene expression at the level of both transcription and post-transcriptional RNA processing is essential for mammalian development. We here investigate the role of protein arginine methyltransferase 5 (PRMT5), a putative splicing regulator and transcriptional cofactor, in mammalian development. We demonstrate that selective deletion of PRMT5 in neural stem/progenitor cells (NPCs) leads to postnatal death in mice. At the molecular level, the absence of PRMT5 results in reduced methylation of Sm proteins, aberrant constitutive splicing, and the alternative splicing of specific mRNAs with weak 5' donor sites. Intriguingly, the products of these mRNAs are, among others, several proteins regulating cell cycle progression. We identify Mdm4 as one of these key mRNAs that senses the defects in the spliceosomal machinery and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in vivo. Our data demonstrate that PRMT5 is a master regulator of splicing in mammals and uncover a new role for the Mdm4 pre-mRNA, which could be exploited for anti-cancer therapy.


Subject(s)
Alternative Splicing/genetics , Protein Methyltransferases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional/genetics , Spliceosomes/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Central Nervous System/pathology , Genes, p53/genetics , HCT116 Cells , HEK293 Cells , Homeostasis/genetics , Humans , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Kaplan-Meier Estimate , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nestin , Protein Binding , Protein Methyltransferases/deficiency , Protein Methyltransferases/genetics , Protein-Arginine N-Methyltransferases , Proto-Oncogene Proteins/genetics , RNA Precursors/genetics , Signal Transduction , Spliceosomes/genetics , Spliceosomes/metabolism , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL