Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Proteomics ; : e2400129, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235396

ABSTRACT

Targeted proteomics, which includes parallel reaction monitoring (PRM), is typically utilized for more precise detection and quantitation of key proteins and/or pathways derived from complex discovery proteomics datasets. Initial discovery-based analysis using data independent acquisition (DIA) can obtain deep proteome coverage with low data missingness while targeted PRM assays can provide additional benefits in further eliminating missing data and optimizing measurement precision. However, PRM method development from bioinformatic predictions can be tedious and time-consuming because of the DIA output complexity. We address this limitation with a Python script that rapidly generates a PRM method for the TIMS-TOF platform using DIA data and a user-defined target list. To evaluate the script, DIA data obtained from HeLa cell lysate (200 ng, 45-min gradient method) as well as canonical pathway information from Ingenuity Pathway Analysis was utilized to generate a pathway-driven PRM method. Subsequent PRM analysis of targets within the example pathway, regulation of apoptosis, resulted in improved chromatographic data and enhanced quantitation precision (100% peptides below 10% CV with a median CV of 2.9%, n = 3 technical replicates). The script is freely available at https://github.com/StevensOmicsLab/PRM-script and provides a framework that can be adapted to multiple DDA/DIA data outputs and instrument-specific PRM method types.

2.
Proteomics ; 22(9): e2100137, 2022 05.
Article in English | MEDLINE | ID: mdl-35081661

ABSTRACT

As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1-10 µM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 µM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.


Subject(s)
Chronic Pain , Neuralgia , Animals , Chronic Pain/metabolism , Cisplatin , Disease Models, Animal , Histone Code , Histones/metabolism , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neuralgia/metabolism , Proteomics
3.
J Proteome Res ; 21(8): 2036-2044, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35876248

ABSTRACT

Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm2), followed by parallel accumulation-serial fragmentation (PASEF) using a quadrupole time-of-flight instrument to determine the effect on the depth of proteome coverage. TIMS fractionation (up to four gas-phase fractions) coupled to data-dependent acquisition (DDA)-PASEF resulted in the detection of ∼7000 proteins and over 70,000 peptides overall from 200 ng of human (HeLa) cell lysate per injection using a commercial 25 cm ultra high performance liquid chromatography (UHPLC) column with a 90 min gradient. This result corresponded to ∼19 and 30% increases in protein and peptide identifications, respectively, when compared to a default, single-range TIMS DDA-PASEF analysis. Quantitation precision was not affected by TIMS fractionation as demonstrated by the average and median coefficient of variation values that were less than 4% upon label-free quantitation of technical replicates. TIMS fractionation was utilized to generate a DDA-based spectral library for downstream data-independent acquisition (DIA) analysis of lower sample input using a shorter LC gradient. The TIMS-fractionated library, consisting of over 7600 proteins and 82,000 peptides, enabled the identification of ∼4000 and 6600 proteins from 10 and 200 ng of human (HeLa) cell lysate input, respectively, with a 20 min gradient, single-shot DIA analysis. Data are available in ProteomeXchange: identifier PXD033129.


Subject(s)
Proteome , Proteomics , Humans , Ion Mobility Spectrometry , Ions , Peptides/analysis , Proteome/analysis , Proteomics/methods
4.
Int J Mol Sci ; 22(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198710

ABSTRACT

Microglial activity in the aging neuroimmune system is a central player in aging-related dysfunction. Aging alters microglial function via shifts in protein signaling cascades. These shifts can propagate neurodegenerative pathology. Therapeutics require a multifaceted approach to understand and address the stochastic nature of this process. Polyphenols offer one such means of rectifying age-related decline. Our group used mass spectrometry (MS) analysis to explicate the complex nature of these aging microglial pathways. In our first experiment, we compared primary microglia isolated from young and aged rats and identified 197 significantly differentially expressed proteins between these groups. Then, we performed bioinformatic analysis to explore differences in canonical signaling cascades related to microglial homeostasis and function with age. In a second experiment, we investigated changes to these pathways in aged animals after 30-day dietary supplementation with NT-020, which is a blend of polyphenols. We identified 144 differentially expressed proteins between the NT-020 group and the control diet group via MS analysis. Bioinformatic analysis predicted an NT-020 driven reversal in the upregulation of age-related canonical pathways that control inflammation, cellular metabolism, and proteostasis. Our results highlight salient aspects of microglial aging at the level of protein interactions and demonstrate a potential role of polyphenols as therapeutics for age-associated dysfunction.


Subject(s)
Aging/physiology , Dietary Supplements , Microglia/metabolism , Polyphenols/pharmacology , Signal Transduction , Animals , Diet , Gene Ontology , Male , Microglia/drug effects , Proteome/metabolism , Rats, Inbred F344 , Signal Transduction/drug effects
5.
Alcohol Clin Exp Res ; 44(9): 1791-1806, 2020 09.
Article in English | MEDLINE | ID: mdl-32767774

ABSTRACT

BACKGROUND: Microglia are the resident immune cells in the brain where they play essential roles in the development and maintenance of physiological functions of this organ. Aberrant activation of microglia is speculated to be involved in the pathogenesis of a variety of neurological disorders, including alcohol use disorders. Repeated binge ethanol (EtOH) consumption can have a profound impact on the function and integrity of the brain resulting in changes in behaviors such as withdrawal and reward. However, the microglial molecular and cellular pathways associated with EtOH binge consumption remain poorly understood. METHOD: In this study, adult C57BL/6J male and female mice were subjected daily to a gelatin-based drinking-in-the-dark voluntary EtOH consumption paradigm (3 h/d for 4 months) to characterize EtOH consumption and withdrawal-associated and anxiety-like behaviors. Brain microglia were isolated at the end and analyzed for protein expression profile changes using unbiased mass spectrometry-based proteomic analysis. RESULTS: Both male and female mice consistently consumed binge quantities of EtOH daily, resulting in blood EtOH levels > 80 mg/dl measured at the end of the 3-hour daily consumption period. Although female mice consumed a significantly greater amount of EtOH than male mice, EtOH withdrawal-associated anxiety-like behaviors measured by marble-burying, light-dark box, and elevated plus maze tests were predominantly observed in male mice. Proteomic analysis of microglia isolated from the brains of animals at the end of the 4-month binge EtOH consumption identified 117 and 37 proteins that were significantly up- or downregulated in EtOH-exposed male and female mice, respectively, compared to their pair-fed controls. Protein expression profile-based pathway analysis identified several cellular pathways that may underlie the sex-specific and EtOH withdrawal-associated behavioral abnormalities. CONCLUSION: Taken together, our findings revealed sex-specific changes in EtOH withdrawal-associated behaviors and signaling pathways in the mouse brain microglia and may help advance our understanding of the molecular, cellular, and behavioral changes related to human binge EtOH consumption.


Subject(s)
Binge Drinking/metabolism , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Microglia/drug effects , Substance Withdrawal Syndrome/physiopathology , Animals , Anxiety , Behavior, Animal/drug effects , Binge Drinking/physiopathology , Central Nervous System Depressants/administration & dosage , Ethanol/administration & dosage , Female , Male , Mice , Microglia/metabolism , Proteomics , Self Administration , Sex Characteristics , Signal Transduction , Substance Withdrawal Syndrome/etiology
6.
Proteomics ; 19(11): e1800469, 2019 06.
Article in English | MEDLINE | ID: mdl-30980500

ABSTRACT

Microglia, as the resident brain immune cells, can exhibit a broad range of activation phenotypes, which have been implicated in a multitude of central nervous system disorders. Current widely studied microglial cell lines are mainly derived from neonatal rodent brain that can limit their relevance to homeostatic function and disease-related neuroimmune responses in the adult brain. Recently, an adult mouse brain-derived microglial cell line has been established; however, a comprehensive proteome dataset remains lacking. Here, an optimization method for sensitive and rapid quantitative proteomic analysis of microglia is described that involves suspension trapping (S-Trap) for efficient and reproducible protein extraction from a limited number of microglial cells expected from an adult mouse brain (≈300 000). Using a 2-h gradient on a 75-cm UPLC column with a modified data dependent acquisition method on a hybrid quadrupole-Orbitrap mass spectrometer, 4855 total proteins have been identified where 4698 of which are quantifiable by label-free quantitation with a median and average coefficient of variation (CV) of 6.7% and 10.6%, respectively. This dataset highlights the high depth of proteome coverage and related quantitation precision of the adult-derived microglial proteome including proteins associated with several key pathways related to immune response. Data are available via ProteomeXchange with identifier PXD012006.


Subject(s)
Microglia/chemistry , Proteome/analysis , Proteomics/methods , Animals , Cells, Cultured , Mice , Microglia/cytology , Proteomics/economics , Time Factors
7.
Proteomics ; 18(23): e1800244, 2018 12.
Article in English | MEDLINE | ID: mdl-30267477

ABSTRACT

Although iron is essential for cell survival, dysregulated levels can contribute to cancer development or even cell death. The underlying mechanisms mediating these events remain unclear. Herein, proteomic alterations are assessed in iron-treated ovarian cell lines using reverse phase protein array (RPPA) technology and potential functional responses via ingenuity pathway analysis (IPA). Using these approaches, upregulation of pathways modulating organismal death with alterations in mTOR, MAPK, and AKT signaling in HEY ovarian cancer cells in contrast to T80 non-malignant ovarian cells is noted. Since modulation of cell death is mediated in part via microphthalmia-associated transcription factor (MiTF) family, which regulates lysosomal biogenesis and autophagosome formation by upregulating expression of coordinated lysosomal expression and regulation (CLEAR) network, expression changes in these factors in response to iron are investigated. Increased transcription factor EB (TFEB) in T80 (relative to HEY), accompanied by its nuclear translocation and increased CLEAR network gene expression with iron, is identified. Inhibition of AKT alters these responses in contrast to mTOR inhibition, which has little effect. Collectively, these findings support use of RPPA/IPA technology to predict functional responses to iron and further implicate AKT pathway and MiTF members in iron-induced cellular responses in ovarian cells.


Subject(s)
Iron/pharmacology , Ovarian Neoplasms/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Female , Humans , Lysosomes/metabolism , Signal Transduction/drug effects
8.
bioRxiv ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39149396

ABSTRACT

Staphylococcus aureus is a major human pathogen causing myriad infections in both community and healthcare settings. Although well studied, a comprehensive exploration of its dynamic and adaptive proteome is still somewhat lacking. Herein, we employed streamlined liquid- and gas-phase fractionation with PASEF analysis on a TIMS-TOF instrument to expand coverage and explore the S. aureus dark proteome. In so doing, we captured the most comprehensive S. aureus proteome to date, totaling 2,231 proteins (85.6% coverage), using a significantly simplified process that demonstrated high reproducibility with minimal input material. We then showcase application of this library for differential expression profiling by investigating temporal dynamics of the S. aureus proteome. This revealed alterations in metabolic processes, ATP production, RNA processing, and stress-response proteins as cultures progressed to stationary growth. Notably, a significant portion of the library (94%) and proteome (80.5%) was identified by this single-shot, DIA-based analysis. Overall, our study shines new light on the hidden S. aureus proteome, generating a valuable new resource to facilitate further study of this dangerous pathogen.

9.
Aging Cell ; : e14314, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225086

ABSTRACT

FKBP51, also known as FK506-binding protein 51, is a molecular chaperone and scaffolding protein with significant roles in regulating hormone signaling and responding to stress. Genetic variants in FKBP5, which encodes FKBP51, have been implicated in a growing number of neuropsychiatric disorders, which has spurred efforts to target FKBP51 therapeutically. However, the molecular mechanisms and sub-anatomical regions influenced by FKBP51 in these disorders are not fully understood. In this study, we aimed to examine the impact of Fkbp5 ablation using circadian phenotyping and molecular analyses. Our findings revealed that the lack of FKBP51 did not significantly alter circadian rhythms, as detected by wheel-running activity, but did offer protection against stress-mediated disruptions in rhythmicity in a sex-dependent manner. Protein changes in Fkbp5 KO mice, as measured by histology and proteomics, revealed alterations in a brain region- and sex-dependent manner. Notably, regardless of sex, aged Fkbp5 KOs showed elevated MYCBP2, FBXO45, and SPRYD3 levels, which are associated with neuronal-cell adhesion and synaptic integrity. Additionally, pathways such as serotonin receptor signaling and S100 family signaling were differentially regulated in Fkbp5 KO mice. Weighted protein correlation network analysis identified protein networks linked with synaptic transmission and neuroinflammation. The information generated by this work can be used to better understand the molecular changes in the brain during aging and in the absence of Fkbp5, which has implications for the continued development of FKBP51-focused therapeutics for stress-related disorders.

10.
Front Oncol ; 13: 1048419, 2023.
Article in English | MEDLINE | ID: mdl-37139155

ABSTRACT

Clear cell renal cell carcinomas (ccRCC) are characterized by arm-wide chromosomal alterations. Loss at 14q is associated with disease aggressiveness in ccRCC, which responds poorly to chemotherapeutics. The 14q locus contains one of the largest miRNA clusters in the human genome; however, little is known about the contribution of these miRNAs to ccRCC pathogenesis. In this regard, we investigated the expression pattern of selected miRNAs at the 14q32 locus in TCGA kidney tumors and in ccRCC cell lines. We demonstrated that the miRNA cluster is downregulated in ccRCC (and cell lines) as well as in papillary kidney tumors relative to normal kidney tissues (and primary renal proximal tubule epithelial (RPTEC) cells). We demonstrated that agents modulating expression of DNMT1 (e.g., 5-Aza-deoxycytidine) could modulate 14q32 miRNA expression in ccRCC cell lines. Lysophosphatidic acid (LPA, a lysophospholipid mediator elevated in ccRCC) not only increased labile iron content but also modulated expression of a 14q32 miRNA. Through an overexpression approach targeting a subset of 14q32 miRNAs (specifically at subcluster A: miR-431-5p, miR-432-5p, miR-127-3p, and miR-433-3p) in 769-P cells, we uncovered changes in cellular viability and claudin-1, a tight junction marker. A global proteomic approach was implemented using these miRNA overexpressing cell lines which uncovered ATXN2 as a highly downregulated target. Collectively, these findings support a contribution of miRNAs at 14q32 in ccRCC pathogenesis.

11.
Mol Cell Endocrinol ; 557: 111773, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36100124

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease initiated by genetic predisposition and environmental influences culminating in the immunologically mediated destruction of pancreatic ß-cells with eventual loss of insulin production. Although T1D can be accurately predicted via autoantibodies, therapies are lacking that can intercede autoimmunity and protect pancreatic ß-cells. There are no approved interventional modalities established for this purpose. One such potential source for clinical agents of this use is from the frequently utilized Cornus officinalis (CO) in the field of ethnopharmacology. Studies by our lab and others have demonstrated that CO has robust proliferative, metabolic, and cytokine protective effects on pancreatic ß-cells. To identify the molecular mechanism of the biological effects of CO, we performed a proteomic and phosphoproteomic analysis examining the cellular networks impacted by CO application on the 1.1B4 pancreatic ß-cell line. Our label-free mass spectrometry approach has demonstrated significant increased phosphorylation of the selective autophagy receptor of p62 (Sequestosome-1/SQSTM1/p62) and predicted activation of the antioxidant Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) pathway. Further validation by immunoblotting and immunofluorescence revealed markers of autophagy such as increased LC3-II and decreased total p62 along with nuclear localization of Nrf2. Both autophagy and the Keap1/Nrf2 pathways have been shown to be impaired in human and animal models of T1D and may serve as an excellent potential therapeutic target stimulated by CO.


Subject(s)
Cornus , Diabetes Mellitus, Type 1 , Insulins , Animals , Antioxidants/metabolism , Autoantibodies , Autophagy/physiology , Cytokines/metabolism , Humans , Insulins/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Proteomics , Sequestosome-1 Protein/metabolism
12.
Sci Rep ; 11(1): 6270, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737539

ABSTRACT

Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the "top" proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.


Subject(s)
Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fallopian Tubes/drug effects , Fallopian Tubes/metabolism , Ferric Compounds/pharmacology , Genetic Loci , MicroRNAs/genetics , Proteome/genetics , Quaternary Ammonium Compounds/pharmacology , Transcriptome/drug effects , Azacitidine/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Transformed , Cell Transformation, Neoplastic/genetics , Down-Regulation/drug effects , Female , Gene Expression Profiling/methods , Humans , MDS1 and EVI1 Complex Locus Protein/genetics , MDS1 and EVI1 Complex Locus Protein/metabolism , MicroRNAs/metabolism , Ovarian Neoplasms/genetics , Proteomics/methods , Transfection , Vorinostat/pharmacology
13.
J Mass Spectrom ; 56(6): e4713, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33942435

ABSTRACT

Oxidative and nitrative stress have been implicated in the molecular mechanisms underlying a variety of biological processes and disease states including cancer, aging, cardiovascular disease, neurological disorders, diabetes, and alcohol-induced liver injury. One marker of nitrative stress is the formation of 3-nitrotyrosine, or protein tyrosine nitration (PTN), which has been observed during inflammation and tissue injury; however, the role of PTN in the progression or possibly the pathogenesis of disease is still unclear. We show in a model of alcohol-induced liver injury that an increase in PTN occurs in hepatocyte nuclei within the liver of wild-type male C57BL/6J mice following chronic ethanol exposure (28 days). High-resolution mass spectrometric analysis of isolated hepatic nuclei revealed several novel sites of tyrosine nitration on histone proteins. Histone nitration sites were validated by tandem mass spectrometry (MS/MS) analysis of representative synthetic nitropeptides equivalent in sequence to the respective nitrotyrosine sites identified in vivo. We further investigated the potential structural impact of the novel histone H3 Tyr41 (H3Y41) nitration site identified using molecular dynamics (MD) simulations. MD simulations of the nitrated and non-nitrated forms of histone H3Y41 showed significant structural changes at the DNA interface upon H3Y41 nitration. The results from this study suggest that, in addition to other known post-translational modifications that occur on histone proteins (e.g., acetylation and methylation), PTN could induce chromatin structural changes, possibly affecting gene transcription processes associated with the development of alcohol-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic/metabolism , Ethanol/metabolism , Histones/analysis , Nitrates/metabolism , Tyrosine/analogs & derivatives , Amino Acid Sequence , Animals , Disease Models, Animal , Histones/metabolism , Liver , Male , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Oxidative Stress , Tandem Mass Spectrometry , Tyrosine/analysis , Tyrosine/metabolism
14.
J Proteomics ; 220: 103753, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32200115

ABSTRACT

Microglia, the resident immune cells of the brain, can exhibit a broad range of activation phenotypes, many of which have been implicated in several diseases and disorders of the central nervous system including those related to alcohol abuse. Given the complexity of global-scale molecular changes that define microglial activation, accurate phenotypic classification in the context of alcohol exposure is still lacking. We employed an optimized method for deep, quantitative proteome profiling of primary microglia in order to characterize their response to acute exposure to alcohol (ethanol) as well as the pro-inflammatory driver and TLR4 agonist, LPS. From this analysis, 5,062 total proteins were identified where 4,857 and 4,928 of those proteins were quantifiable by label-free quantitation in ethanol and LPS treatment groups, respectively. This study highlights the subtle, yet significant proteomic changes that occur in ethanol-treated microglia, which do not align with the robust pro-inflammatory phenotype induced by TLR4 activation. Specifically, our results indicate inhibition of several upstream regulators associated with inflammation, opposing effects on pathways such as phagocytosis upon comparison to TLR4-mediated pro-inflammatory phenotype, and a potential metabolic shift associated with increased expression of proteins related to OXPHOS and lipid homeostasis. Data are available via ProteomeXchange with identifier PXD14466. SIGNIFICANCE: Alcohol abuse has a significant impact on the central nervous system, which includes the pathophysiological mechanisms resulting from glial cell activation. Microglia, in particular, are the resident immune cells of the brain and exhibit a broad range of activation phenotypes. The molecular changes that drive microglial activation phenotype are complex and have yet to be fully characterized in the context of alcohol exposure. Our study highlights the first and most comprehensive characterization of alcohol-induced proteomic changes in primary microglia to date and has shed light on novel immune-related and metabolic pathways that are altered due to alcohol exposure. The results from this study provide an important foundation for future work aimed to understand the complexity of alcohol-induced microglial activation in vivo and other translational models of acute and chronic alcohol exposure.


Subject(s)
Microglia , Proteome , Ethanol/adverse effects , Phenotype , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL