Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Chem Biol ; 19(12): 1469-1479, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37349583

ABSTRACT

Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.


Subject(s)
Bacteroides thetaiotaomicron , Diabetes Mellitus, Type 2 , Humans , Dipeptidyl Peptidase 4/genetics , Serine
3.
Eur Respir J ; 57(6)2021 06.
Article in English | MEDLINE | ID: mdl-33303549

ABSTRACT

BACKGROUND: Elevated levels of interleukin (IL)-17A were detected in the airways of patients with cystic fibrosis (CF), but its cellular sources and role in the pathogenesis of CF lung disease remain poorly understood. The aim of this study was to determine the sources of IL-17A and its role in airway inflammation and lung damage in CF. METHODS: We performed flow cytometry to identify IL-17A-producing cells in lungs and peripheral blood from CF patients and ß-epithelial Na+ channel transgenic (Scnn1b-Tg) mice with CF-like lung disease, and determined the effects of genetic deletion of Il17a and Rag1 on the pulmonary phenotype of Scnn1b-Tg mice. RESULTS: T-helper 17 cells, CD3+CD8+ T-cells, γδ T-cells, invariant natural killer T-cells and innate lymphoid cells contribute to IL-17A secretion in lung tissue, lymph nodes and peripheral blood of patients with CF. Scnn1b-Tg mice displayed increased pulmonary expression of Il17a and elevated IL-17A-producing innate and adaptive lymphocytes with a major contribution by γδ T-cells. Lack of IL-17A, but not the recombination activating protein RAG1, reduced neutrophilic airway inflammation in Scnn1b-Tg mice. Genetic deletion of Il17a or Rag1 had no effect on mucus obstruction, but reduced structural lung damage and revealed an IL-17A-dependent macrophage activation in Scnn1b-Tg mice. CONCLUSIONS: We identify innate and adaptive sources of IL-17A in CF lung disease. Our data demonstrate that IL-17A contributes to airway neutrophilia, macrophage activation and structural lung damage in CF-like lung disease in mice. These results suggest IL-17A as a novel target for anti-inflammatory therapy of CF lung disease.


Subject(s)
Cystic Fibrosis , Animals , CD8-Positive T-Lymphocytes , Disease Models, Animal , Humans , Immunity, Innate , Inflammation , Interleukin-17 , Lung , Lymphocytes , Mice , Mice, Inbred C57BL
4.
J Am Chem Soc ; 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33186023

ABSTRACT

Neutrophil extracellular traps (NETs) consist of DNA released by terminally stimulated neutrophils. They fine-tune inflammation, kill pathogens, activate macrophages, contribute to airway mucus obstruction in cystic fibrosis, and facilitate tumor metastasis after dormancy. Neutrophil proteases such as elastase (NE) and cathepsin G (CG) attach to NETs and contribute to the diverse immune outcome. However, because of the lack of suitable tools, little spatiotemporal information on protease activities on NETs is available in a pathophysiological context to date. Here, we present H-NE and H-CG, two FRET-based reporters armed with a DNA minor groove binder, which monitor DNA-bound NE and CG activity, respectively. The probes revealed that only NE maintains its catalytic ability when localized to DNA. Further, we demonstrated elevated protease activity within the extracellular DNA of sputum from cystic fibrosis patients. Finally, H-NE showed NE activity at single-cell and free DNA resolution within mouse lung slices, a difficult to achieve task with available substrate-based reporters.

6.
ACS Sens ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941307

ABSTRACT

Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become the standard of care in cancer surgeries. One of the key parameters to optimize in contrast agents is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker, as well as the positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased overall signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.

7.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766164

ABSTRACT

Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become standard of care in cancer surgeries. One of the key parameters to optimize in contrast agent is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker as well as positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased over-all signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.

8.
ACS Cent Sci ; 9(5): 1059-1069, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37252358

ABSTRACT

Surgery is the preferred treatment option for most solid tumors. However, inaccurate detection of cancer borders leads to either incomplete removal of malignant cells or excess excision of healthy tissue. While fluorescent contrast agents and imaging systems improve tumor visualization, they can suffer from low signal-to-background and are prone to technical artifacts. Ratiometric imaging has the potential to eliminate many of these issues such as uneven probe distribution, tissue autofluorescence, and changes in positioning of the light source. Here, we describe a strategy to convert quenched fluorescent probes into ratiometric contrast agents. Conversion of the cathepsin-activated probe, 6QC-Cy5, into a two-fluorophore probe, 6QC-RATIO, significantly improved signal-to-background in vitro and in a mouse subcutaneous breast tumor model. Tumor detection sensitivity was further enhanced using a dual-substrate AND-gate ratiometric probe, Death-Cat-RATIO, that fluoresces only after orthogonal processing by multiple tumor-specific proteases. We also designed and built a modular camera system that was coupled to the FDA-approved da Vinci Xi robot, to enable real-time imaging of ratiometric signals at video frame rates compatible with surgical workflows. Our results demonstrate that ratiometric camera systems and imaging probes have the potential to be clinically implemented to improve surgical resection of many types of cancer.

9.
ACS Chem Biol ; 17(2): 281-291, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35026106

ABSTRACT

Abnormal enzyme expression and activity is a hallmark of many diseases. Activity-based diagnostics are a class of chemical probes that aim to leverage this dysregulated metabolic signature to produce a detectable signal specific to diseased tissue. In this Review, we highlight recent methodologies employed in activity-based diagnostics that provide exquisite signal sensitivity and specificity in complex biological systems for multiple disease states. We divide these examples based upon their unique signal readout modalities and highlight those that have advanced into clinical trials.

10.
J Vis Exp ; (171)2021 05 21.
Article in English | MEDLINE | ID: mdl-34096915

ABSTRACT

Proteases are regulators of countless physiological processes and the precise investigation of their activities remains an intriguing biomedical challenge. Among the ~600 proteases encoded by the human genome, neutrophil serine proteases (NSPs) are thoroughly investigated for their involvement in the onset and progression of inflammatory conditions including respiratory diseases. Uniquely, secreted NSPs not only diffuse within extracellular fluids but also localize to plasma membranes. During neutrophil extracellular trap (NETs) formation, NSPs become an integral part of the secreted chromatin. Such complex behavior renders the understanding of NSPs pathophysiology a challenging task. Here, detailed protocols are shown to visualize, quantify and discriminate free and membrane-bound neutrophil elastase (NE) and cathepsin G (CG) activities in sputum samples. NE and CG are NSPs whose activities have pleiotropic roles in the pathogenesis of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD): they promote tissue remodeling, regulate downstream immune responses and correlate with lung disease severity. The protocols show how to separate fluid and cellular fraction, as well as the isolation of neutrophils from human sputum for enzymatic activity quantification via small-molecule Förster resonance energy transfer-based (FRET) reporters. To gather specific insights into the relative role of NE and CG activities, a FRET readout can be measured by different technologies: i) in vitro plate reader measurements allow for high-throughput and bulk detection of protease activity; ii) confocal microscopy spatiotemporally resolves membrane-bound activity at the cell surface; iii) small-molecule FRET flow cytometry enables for the rapid evaluation of anti-inflammatory treatments via single-cell protease activity quantification and phenotyping. The implementation of such methods opens the doors to explore NSPs pathobiology and their potential as biomarkers of disease severity for CF and COPD. Given their standardization potential, their robust readout and simplicity of transfer, the described techniques are immediately shareable for implementation across research and diagnostic laboratories.


Subject(s)
Cathepsin G , Cystic Fibrosis , Leukocyte Elastase , Pulmonary Disease, Chronic Obstructive , Cystic Fibrosis/enzymology , Humans , Neutrophils/enzymology , Pulmonary Disease, Chronic Obstructive/enzymology , Serine Proteases , Sputum/enzymology
11.
ACS Cent Sci ; 5(3): 539-548, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30937381

ABSTRACT

Muco-obstructive lung diseases feature extensive bronchiectasis due to the uncontrolled release of neutrophil serine proteases into the airways. To assess if cathepsin G (CG) is a novel key player in chronic lung inflammation, we developed membrane-bound (mSAM) and soluble (sSAM) FRET reporters. The probes quantitatively revealed elevated CG activity in samples from 46 patients. For future basic science and personalized clinical applications, we developed a rapid, highly informative, and easily translatable small-molecule FRET flow cytometry assay for monitoring protease activity including cathepsin G. We demonstrated that mSAM distinguished healthy from patient cells by FRET-based flow cytometry with excellent correlation to confocal microscopy data.

12.
ACS Chem Biol ; 14(8): 1727-1736, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31310497

ABSTRACT

Bacterial resistance represents a major health threat worldwide, and the development of new therapeutics, including innovative antibiotics, is urgently needed. We describe a discovery platform, centered on in silico screening and in vivo bioluminescence resonance energy transfer in yeast cells, for the identification of new antimicrobials that, by targeting the protein-protein interaction between the ß'-subunit and the initiation factor σ70 of bacterial RNA polymerase, inhibit holoenzyme assembly and promoter-specific transcription. Out of 34 000 candidate compounds, we identified seven hits capable of interfering with this interaction. Two derivatives of one of these hits proved to be effective in inhibiting transcription in vitro and growth of the Gram-positive pathogens Staphylococcus aureus and Listeria monocytogenes. Upon supplementation of a permeability adjuvant, one derivative also effectively inhibited Escherichia coli growth. On the basis of the chemical structures of these inhibitors, we generated a ligand-based pharmacophore model that will guide the rational discovery of increasingly effective antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , DNA-Directed RNA Polymerases/antagonists & inhibitors , Indoles/pharmacology , Sigma Factor/antagonists & inhibitors , Anti-Bacterial Agents/toxicity , Bacillales/drug effects , Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Drug Discovery , Erythrocytes/drug effects , Escherichia coli/drug effects , Hemolysis/drug effects , Holoenzymes/metabolism , Humans , Indoles/toxicity , Ligands , Microbial Sensitivity Tests , Proof of Concept Study , Protein Binding/drug effects , Saccharomyces cerevisiae/drug effects , Sigma Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL