ABSTRACT
This study aimed to explore and develop data mining models for adult age estimation based on CT reconstruction images from the sternum. Maximum intensity projection (MIP) images of chest CT were retrospectively collected from a modern Chinese population, and data from 2700 patients (1349 males and 1351 females) aged 20 to 70 years were obtained. A staging technique within four indicators was applied. Several data mining models were established, and mean absolute error (MAE) was the primary comparison parameter. The intraobserver and interobserver agreement levels were good. Within internal validation, the optimal data mining model obtained the lowest MAE of 9.08 in males and 10.41 in females. For the external validation (N = 200), MAEs were 7.09 in males and 7.15 in females. In conclusion, the accuracy of our model for adult age estimation was among similar studies. MIP images of the sternum could be a potential age indicator. However, it should be combined with other indicators since the accuracy level is still unsatisfactory.