Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
Cell ; 153(3): 666-77, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23622249

ABSTRACT

The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis.


Subject(s)
Chromosome Aberrations , Gene Expression Regulation, Neoplastic , Genome, Human , Prostatic Neoplasms/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cohort Studies , Genome-Wide Association Study , Humans , Male , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Prostatic Neoplasms/pathology
2.
Genet Med ; 25(4): 100006, 2023 04.
Article in English | MEDLINE | ID: mdl-36621880

ABSTRACT

PURPOSE: Assessing the risk of common, complex diseases requires consideration of clinical risk factors as well as monogenic and polygenic risks, which in turn may be reflected in family history. Returning risks to individuals and providers may influence preventive care or use of prophylactic therapies for those individuals at high genetic risk. METHODS: To enable integrated genetic risk assessment, the eMERGE (electronic MEdical Records and GEnomics) network is enrolling 25,000 diverse individuals in a prospective cohort study across 10 sites. The network developed methods to return cross-ancestry polygenic risk scores, monogenic risks, family history, and clinical risk assessments via a genome-informed risk assessment (GIRA) report and will assess uptake of care recommendations after return of results. RESULTS: GIRAs include summary care recommendations for 11 conditions, education pages, and clinical laboratory reports. The return of high-risk GIRA to individuals and providers includes guidelines for care and lifestyle recommendations. Assembling the GIRA required infrastructure and workflows for ingesting and presenting content from multiple sources. Recruitment began in February 2022. CONCLUSION: Return of a novel report for communicating monogenic, polygenic, and family history-based risk factors will inform the benefits of integrated genetic risk assessment for routine health care.


Subject(s)
Genome , Genomics , Humans , Prospective Studies , Genomics/methods , Risk Factors , Risk Assessment
3.
Nat Genet ; 40(9): 1059-61, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19165918

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease influenced by genetic and environmental factors. We carried out a genome-wide association scan and replication study and found an association between SLE and a variant in TNFAIP3 (rs5029939, meta-analysis P = 2.89 x 10(-12), OR = 2.29). We also found evidence of two independent signals near TNFAIP3 associated with SLE, including one previously associated with rheumatoid arthritis (RA). These results establish that variants near TNFAIP3 contribute to differential risk of SLE and RA.


Subject(s)
Chromosomes, Human, Pair 6 , Intracellular Signaling Peptides and Proteins/genetics , Lupus Erythematosus, Systemic/genetics , Nuclear Proteins/genetics , Arthritis, Rheumatoid/genetics , DNA-Binding Proteins , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Tumor Necrosis Factor alpha-Induced Protein 3
4.
Am J Hum Genet ; 92(1): 15-27, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23261300

ABSTRACT

The extent to which variants in the protein-coding sequence of genes contribute to risk of rheumatoid arthritis (RA) is unknown. In this study, we addressed this issue by deep exon sequencing and large-scale genotyping of 25 biological candidate genes located within RA risk loci discovered by genome-wide association studies (GWASs). First, we assessed the contribution of rare coding variants in the 25 genes to the risk of RA in a pooled sequencing study of 500 RA cases and 650 controls of European ancestry. We observed an accumulation of rare nonsynonymous variants exclusive to RA cases in IL2RA and IL2RB (burden test: p = 0.007 and p = 0.018, respectively). Next, we assessed the aggregate contribution of low-frequency and common coding variants to the risk of RA by dense genotyping of the 25 gene loci in 10,609 RA cases and 35,605 controls. We observed a strong enrichment of coding variants with a nominal signal of association with RA (p < 0.05) after adjusting for the best signal of association at the loci (p(enrichment) = 6.4 × 10(-4)). For one locus containing CD2, we found that a missense variant, rs699738 (c.798C>A [p.His266Gln]), and a noncoding variant, rs624988, reside on distinct haplotypes and independently contribute to the risk of RA (p = 4.6 × 10(-6)). Overall, our results indicate that variants (distributed across the allele-frequency spectrum) within the protein-coding portion of a subset of biological candidate genes identified by GWASs contribute to the risk of RA. Further, we have demonstrated that very large sample sizes will be required for comprehensively identifying the independent alleles contributing to the missing heritability of RA.


Subject(s)
Arthritis, Rheumatoid/genetics , Gene Frequency , Genetic Predisposition to Disease , Genetic Variation , Polymorphism, Single Nucleotide , Exons , Genome-Wide Association Study , Humans , Risk Factors
5.
PLoS Genet ; 8(9): e1002921, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028342

ABSTRACT

Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 × 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 × 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-ß1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetic Nephropathies/genetics , ErbB Receptors/genetics , Kidney Failure, Chronic , Nuclear Proteins/genetics , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Fibrosis/genetics , Fibrosis/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/pathology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Receptor, ErbB-4 , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
6.
Nat Genet ; 38(11): 1298-303, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17057720

ABSTRACT

A general question for linkage disequilibrium-based association studies is how power to detect an association is compromised when tag SNPs are chosen from data in one population sample and then deployed in another sample. Specifically, it is important to know how well tags picked from the HapMap DNA samples capture the variation in other samples. To address this, we collected dense data uniformly across the four HapMap population samples and eleven other population samples. We picked tag SNPs using genotype data we collected in the HapMap samples and then evaluated the effective coverage of these tags in comparison to the entire set of common variants observed in the other samples. We simulated case-control association studies in the non-HapMap samples under a disease model of modest risk, and we observed little loss in power. These results demonstrate that the HapMap DNA samples can be used to select tags for genome-wide association studies in many samples around the world.


Subject(s)
Chromosome Mapping/methods , Genetics, Population/methods , Polymorphism, Single Nucleotide , Sequence Tagged Sites , Breast Neoplasms/ethnology , Breast Neoplasms/genetics , Case-Control Studies , Cohort Studies , Computer Simulation , Female , Genetic Variation , Genome, Human , Human Genome Project , Humans , Linkage Disequilibrium , Male , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/genetics
7.
N Engl J Med ; 363(23): 2220-7, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-20942659

ABSTRACT

We sequenced all protein-coding regions of the genome (the "exome") in two family members with combined hypolipidemia, marked by extremely low plasma levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. These two participants were compound heterozygotes for two distinct nonsense mutations in ANGPTL3 (encoding the angiopoietin-like 3 protein). ANGPTL3 has been reported to inhibit lipoprotein lipase and endothelial lipase, thereby increasing plasma triglyceride and HDL cholesterol levels in rodents. Our finding of ANGPTL3 mutations highlights a role for the gene in LDL cholesterol metabolism in humans and shows the usefulness of exome sequencing for identification of novel genetic causes of inherited disorders. (Funded by the National Human Genome Research Institute and others.).


Subject(s)
Angiopoietins/genetics , Codon, Nonsense , Hypobetalipoproteinemias/genetics , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins , Cholesterol, HDL/blood , Cholesterol, HDL/genetics , Cholesterol, LDL/blood , Cholesterol, LDL/genetics , DNA Mutational Analysis , Female , Genetic Linkage , Humans , Male , Pedigree
8.
PLoS Genet ; 6(3): e1000866, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20221249

ABSTRACT

As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different ancestries will be studied to increase power, fine map association signals, and generalize association results to additional populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian, Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT and CHB).


Subject(s)
Gene Pool , Genetics, Population/methods , Genome, Human/genetics , Phylogeny , Asian People/genetics , Gene Frequency/genetics , Genetic Markers , Genotype , Humans , Principal Component Analysis , Quality Control , Reproducibility of Results
9.
PLoS Genet ; 6(10): e1001183, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21060860

ABSTRACT

The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (<40 years) affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (λ) was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values<10(-5) and 39 SNPs had p-values<10(-4). These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95% confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66-0.86, ) and for rs311499 was 0.72 (95% CI 0.61-0.85, ). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18-1.39, ). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer.


Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Adult , Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 20 , DNA-Binding Proteins/genetics , Female , Gene Frequency , Genetic Predisposition to Disease/genetics , Haplotypes , Heterozygote , Humans , Linkage Disequilibrium , Middle Aged , Mutation , Penetrance , Receptor, Fibroblast Growth Factor, Type 2/genetics , Risk Factors , Transcription Factors/genetics , White People/genetics
10.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333246

ABSTRACT

Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.

11.
Hum Mol Genet ; 19(13): 2725-38, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20400458

ABSTRACT

Genome-wide association (GWA) studies have identified common variants that are associated with a variety of traits and diseases, but most studies have been performed in European-derived populations. Here, we describe the first genome-wide analyses of imputed genotype and copy number variants (CNVs) for anthropometric measures in African-derived populations: 1188 Nigerians from Igbo-Ora and Ibadan, Nigeria, and 743 African-Americans from Maywood, IL. To improve the reach of our study, we used imputation to estimate genotypes at approximately 2.1 million single-nucleotide polymorphisms (SNPs) and also tested CNVs for association. No SNPs or common CNVs reached a genome-wide significance level for association with height or body mass index (BMI), and the best signals from a meta-analysis of the two cohorts did not replicate in approximately 3700 African-Americans and Jamaicans. However, several loci previously confirmed in European populations showed evidence of replication in our GWA panel of African-derived populations, including variants near IHH and DLEU7 for height and MC4R for BMI. Analysis of global burden of rare CNVs suggested that lean individuals possess greater total burden of CNVs, but this finding was not supported in an independent European population. Our results suggest that there are not multiple loci with strong effects on anthropometric traits in African-derived populations and that sample sizes comparable to those needed in European GWA studies will be required to identify replicable associations. Meta-analysis of this data set with additional studies in African-ancestry populations will be helpful to improve power to detect novel associations.


Subject(s)
Black People/genetics , Black or African American/genetics , DNA Copy Number Variations , Genome-Wide Association Study , Adolescent , Adult , Aged , Anthropometry , Genotype , Humans , Illinois , Jamaica , Middle Aged , Models, Statistical , Nigeria , Polymorphism, Single Nucleotide , Young Adult
12.
Hum Genet ; 130(5): 607-21, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21424828

ABSTRACT

Genome-wide genotyping of a cohort using pools rather than individual samples has long been proposed as a cost-saving alternative for performing genome-wide association (GWA) studies. However, successful disease gene mapping using pooled genotyping has thus far been limited to detecting common variants with large effect sizes, which tend not to exist for many complex common diseases or traits. Therefore, for DNA pooling to be a viable strategy for conducting GWA studies, it is important to determine whether commonly used genome-wide SNP array platforms such as the Affymetrix 6.0 array can reliably detect common variants of small effect sizes using pooled DNA. Taking obesity and age at menarche as examples of human complex traits, we assessed the feasibility of genome-wide genotyping of pooled DNA as a single-stage design for phenotype association. By individually genotyping the top associations identified by pooling, we obtained a 14- to 16-fold enrichment of SNPs nominally associated with the phenotype, but we likely missed the top true associations. In addition, we assessed whether genotyping pooled DNA can serve as an inexpensive screen as the second stage of a multi-stage design with a large number of samples by comparing the most cost-effective 3-stage designs with 80% power to detect common variants with genotypic relative risk of 1.1, with and without pooling. Given the current state of the specific technology we employed and the associated genotyping costs, we showed through simulation that a design involving pooling would be 1.07 times more expensive than a design without pooling. Thus, while a significant amount of information exists within the data from pooled DNA, our analysis does not support genotyping pooled DNA as a means to efficiently identify common variants contributing small effects to phenotypes of interest. While our conclusions were based on the specific technology and study design we employed, the approach presented here will be useful for evaluating the utility of other or future genome-wide genotyping platforms in pooled DNA studies.


Subject(s)
Genome-Wide Association Study/methods , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , Adolescent , Child , Cohort Studies , Computer Simulation , Female , Genetic Variation , Genome-Wide Association Study/economics , Humans , Male , Menarche/genetics , Obesity/genetics , Oligonucleotide Array Sequence Analysis/economics , Polymorphism, Single Nucleotide
13.
Hum Genet ; 130(5): 685-99, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21597964

ABSTRACT

Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele frequencies in the surrounding genomic regions reflect adaptive or balancing selection. Such proposals predict long-range linkage disequilibrium (LD) resulting from a selective sweep, although genetic drift in a founder population may also act to create long-distance LD. To date, few studies have used the tools of statistical genomics to examine the likelihood of long-range LD at a deleterious locus in a population that faced a genetic bottleneck. We studied the genotypes of hundreds of women from a large international consortium of BRCA1 and BRCA2 mutation carriers and found that AJ women exhibited long-range haplotypes compared to CNJ women. More than 50% of the AJ chromosomes with the BRCA1 185delAG mutation share an identical 2.1 Mb haplotype and nearly 16% of AJ chromosomes carrying the BRCA2 6174delT mutation share a 1.4 Mb haplotype. Simulations based on the best inference of Ashkenazi population demography indicate that long-range haplotypes are expected in the context of a genome-wide survey. Our results are consistent with the hypothesis that a local bottleneck effect from population size constriction events could by chance have resulted in the large haplotype blocks observed at high frequency in the BRCA1 and BRCA2 regions of Ashkenazi Jews.


Subject(s)
Arthritis/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Deafness/genetics , Haplotypes/genetics , Polychondritis, Relapsing/genetics , Base Sequence , Computer Simulation , Female , Founder Effect , Genotype , Heterozygote , Humans , Jews/genetics , Sequence Deletion
14.
Lancet ; 376(9750): 1393-400, 2010 Oct 23.
Article in English | MEDLINE | ID: mdl-20971364

ABSTRACT

BACKGROUND: Comparison of patients with coronary heart disease and controls in genome-wide association studies has revealed several single nucleotide polymorphisms (SNPs) associated with coronary heart disease. We aimed to establish the external validity of these findings and to obtain more precise risk estimates using a prospective cohort design. METHODS: We tested 13 recently discovered SNPs for association with coronary heart disease in a case-control design including participants differing from those in the discovery samples (3829 participants with prevalent coronary heart disease and 48,897 controls free of the disease) and a prospective cohort design including 30,725 participants free of cardiovascular disease from Finland and Sweden. We modelled the 13 SNPs as a multilocus genetic risk score and used Cox proportional hazards models to estimate the association of genetic risk score with incident coronary heart disease. For case-control analyses we analysed associations between individual SNPs and quintiles of genetic risk score using logistic regression. FINDINGS: In prospective cohort analyses, 1264 participants had a first coronary heart disease event during a median 10·7 years' follow-up (IQR 6·7-13·6). Genetic risk score was associated with a first coronary heart disease event. When compared with the bottom quintile of genetic risk score, participants in the top quintile were at 1·66-times increased risk of coronary heart disease in a model adjusting for traditional risk factors (95% CI 1·35-2·04, p value for linear trend=7·3×10(-10)). Adjustment for family history did not change these estimates. Genetic risk score did not improve C index over traditional risk factors and family history (p=0·19), nor did it have a significant effect on net reclassification improvement (2·2%, p=0·18); however, it did have a small effect on integrated discrimination index (0·004, p=0·0006). Results of the case-control analyses were similar to those of the prospective cohort analyses. INTERPRETATION: Using a genetic risk score based on 13 SNPs associated with coronary heart disease, we can identify the 20% of individuals of European ancestry who are at roughly 70% increased risk of a first coronary heart disease event. The potential clinical use of this panel of SNPs remains to be defined. FUNDING: The Wellcome Trust; Academy of Finland Center of Excellence for Complex Disease Genetics; US National Institutes of Health; the Donovan Family Foundation.


Subject(s)
Coronary Disease/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Adult , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Middle Aged , Myocardial Infarction/genetics , Proportional Hazards Models , Risk Assessment
15.
N Engl J Med ; 358(12): 1240-9, 2008 Mar 20.
Article in English | MEDLINE | ID: mdl-18354102

ABSTRACT

BACKGROUND: Common single-nucleotide polymorphisms (SNPs) that are associated with blood low-density lipoprotein (LDL) or high-density lipoprotein (HDL) cholesterol modestly affect lipid levels. We tested the hypothesis that a combination of such SNPs contributes to the risk of cardiovascular disease. METHODS: We studied SNPs at nine loci in 5414 subjects from the cardiovascular cohort of the Malmö Diet and Cancer Study. We first validated the association between SNPs and either LDL or HDL cholesterol and subsequently created a genotype score on the basis of the number of unfavorable alleles. We used Cox proportional-hazards models to determine the time to the first cardiovascular event in relation to the genotype score. RESULTS: All nine SNPs showed replication of an association with levels of either LDL or HDL cholesterol. With increasing genotype scores, the level of LDL cholesterol increased from 152 mg to 171 mg per deciliter (3.9 to 4.4 mmol per liter), whereas HDL cholesterol decreased from 60 mg to 51 mg per deciliter (1.6 to 1.3 mmol per liter). During follow-up (median, 10.6 years), 238 subjects had a first cardiovascular event. The genotype score was associated with incident cardiovascular disease in models adjusted for covariates including baseline lipid levels (P<0.001). The use of the genotype score did not improve the clinical risk prediction, as assessed by the C statistic. However, there was a significant improvement in risk classification with the use of models that included the genotype score, as compared with those that did not include the genotype score. CONCLUSIONS: A genotype score of nine validated SNPs that are associated with modulation in levels of LDL or HDL cholesterol was an independent risk factor for incident cardiovascular disease. The score did not improve risk discrimination but did modestly improve clinical risk reclassification for individual subjects beyond standard clinical factors.


Subject(s)
Cardiovascular Diseases/genetics , Cholesterol, HDL/genetics , Cholesterol, LDL/genetics , Polymorphism, Single Nucleotide , Cardiovascular Diseases/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Coronary Disease/genetics , Coronary Disease/mortality , Female , Humans , Male , Middle Aged , Multivariate Analysis , Myocardial Infarction/genetics , Proportional Hazards Models , ROC Curve , Risk Factors , Stroke/genetics
16.
Arthritis Rheum ; 62(7): 1849-61, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20309874

ABSTRACT

OBJECTIVE: Anti-tumor necrosis factor alpha (anti-TNF) therapy is a mainstay of treatment in rheumatoid arthritis (RA). The aim of the present study was to test established RA genetic risk factors to determine whether the same alleles also influence the response to anti-TNF therapy. METHODS: A total of 1,283 RA patients receiving etanercept, infliximab, or adalimumab therapy were studied from among an international collaborative consortium of 9 different RA cohorts. The primary end point compared RA patients with a good treatment response according to the European League Against Rheumatism (EULAR) response criteria (n = 505) with RA patients considered to be nonresponders (n = 316). The secondary end point was the change from baseline in the level of disease activity according to the Disease Activity Score in 28 joints (triangle upDAS28). Clinical factors such as age, sex, and concomitant medications were tested as possible correlates of treatment response. Thirty-one single-nucleotide polymorphisms (SNPs) associated with the risk of RA were genotyped and tested for any association with treatment response, using univariate and multivariate logistic regression models. RESULTS: Of the 31 RA-associated risk alleles, a SNP at the PTPRC (also known as CD45) gene locus (rs10919563) was associated with the primary end point, a EULAR good response versus no response (odds ratio [OR] 0.55, P = 0.0001 in the multivariate model). Similar results were obtained using the secondary end point, the triangle upDAS28 (P = 0.0002). There was suggestive evidence of a stronger association in autoantibody-positive patients with RA (OR 0.55, 95% confidence interval [95% CI] 0.39-0.76) as compared with autoantibody-negative patients (OR 0.90, 95% CI 0.41-1.99). CONCLUSION: Statistically significant associations were observed between the response to anti-TNF therapy and an RA risk allele at the PTPRC gene locus. Additional studies will be required to replicate this finding in additional patient collections.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Leukocyte Common Antigens/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Arthritis, Rheumatoid/physiopathology , Disability Evaluation , Female , Genetic Predisposition to Disease , Health Status , Humans , International Cooperation , Leukocyte Common Antigens/metabolism , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Severity of Illness Index , Treatment Outcome
17.
BMC Med Genet ; 8 Suppl 1: S17, 2007 Sep 19.
Article in English | MEDLINE | ID: mdl-17903299

ABSTRACT

BACKGROUND: Blood lipid levels including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are highly heritable. Genome-wide association is a promising approach to map genetic loci related to these heritable phenotypes. METHODS: In 1087 Framingham Heart Study Offspring cohort participants (mean age 47 years, 52% women), we conducted genome-wide analyses (Affymetrix 100K GeneChip) for fasting blood lipid traits. Total cholesterol, HDL-C, and TG were measured by standard enzymatic methods and LDL-C was calculated using the Friedewald formula. The long-term averages of up to seven measurements of LDL-C, HDL-C, and TG over a approximately 30 year span were the primary phenotypes. We used generalized estimating equations (GEE), family-based association tests (FBAT) and variance components linkage to investigate the relationships between SNPs (on autosomes, with minor allele frequency > or =10%, genotypic call rate > or =80%, and Hardy-Weinberg equilibrium p > or = 0.001) and multivariable-adjusted residuals. We pursued a three-stage replication strategy of the GEE association results with 287 SNPs (P < 0.001 in Stage I) tested in Stage II (n approximately 1450 individuals) and 40 SNPs (P < 0.001 in joint analysis of Stages I and II) tested in Stage III (n approximately 6650 individuals). RESULTS: Long-term averages of LDL-C, HDL-C, and TG were highly heritable (h2 = 0.66, 0.69, 0.58, respectively; each P < 0.0001). Of 70,987 tests for each of the phenotypes, two SNPs had p < 10(-5) in GEE results for LDL-C, four for HDL-C, and one for TG. For each multivariable-adjusted phenotype, the number of SNPs with association p < 10(-4) ranged from 13 to 18 and with p < 10(-3), from 94 to 149. Some results confirmed previously reported associations with candidate genes including variation in the lipoprotein lipase gene (LPL) and HDL-C and TG (rs7007797; P = 0.0005 for HDL-C and 0.002 for TG). The full set of GEE, FBAT and linkage results are posted at the database of Genotype and Phenotype (dbGaP). After three stages of replication, there was no convincing statistical evidence for association (i.e., combined P < 10(-5) across all three stages) between any of the tested SNPs and lipid phenotypes. CONCLUSION: Using a 100K genome-wide scan, we have generated a set of putative associations for common sequence variants and lipid phenotypes. Validation of selected hypotheses in additional samples did not identify any new loci underlying variability in blood lipids. Lack of replication may be due to inadequate statistical power to detect modest quantitative trait locus effects (i.e., <1% of trait variance explained) or reduced genomic coverage of the 100K array. GWAS in FHS using a denser genome-wide genotyping platform and a better-powered replication strategy may identify novel loci underlying blood lipids.


Subject(s)
Cardiovascular Diseases/genetics , Genome, Human , Lipids/blood , Adult , Cardiovascular Diseases/blood , Cohort Studies , Female , Genetic Markers , Genotype , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide
18.
Elife ; 4: e00662, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25646566

ABSTRACT

Candida albicans is both a member of the healthy human microbiome and a major pathogen in immunocompromised individuals. Infections are typically treated with azole inhibitors of ergosterol biosynthesis often leading to drug resistance. Studies in clinical isolates have implicated multiple mechanisms in resistance, but have focused on large-scale aberrations or candidate genes, and do not comprehensively chart the genetic basis of adaptation. Here, we leveraged next-generation sequencing to analyze 43 isolates from 11 oral candidiasis patients. We detected newly selected mutations, including single-nucleotide polymorphisms (SNPs), copy-number variations and loss-of-heterozygosity (LOH) events. LOH events were commonly associated with acquired resistance, and SNPs in 240 genes may be related to host adaptation. Conversely, most aneuploidies were transient and did not correlate with drug resistance. Our analysis also shows that isolates also varied in adherence, filamentation, and virulence. Our work reveals new molecular mechanisms underlying the evolution of drug resistance and host adaptation.


Subject(s)
Candida albicans/drug effects , Candida albicans/genetics , Candidiasis/microbiology , Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Evolution, Molecular , Adhesiveness , Aneuploidy , Candida albicans/isolation & purification , Fluconazole/pharmacology , Genetic Fitness/drug effects , Genome, Human , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Loss of Heterozygosity/genetics , Microbial Sensitivity Tests , Mutation/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Virulence/drug effects , Virulence/genetics
19.
J Clin Endocrinol Metab ; 99(5): E926-30, 2014 May.
Article in English | MEDLINE | ID: mdl-24471563

ABSTRACT

CONTEXT/OBJECTIVE: The variant rs13266634 in SLC30A8, encoding a ß-cell-specific zinc transporter, is associated with type 2 diabetes. We aimed to identify other variants in SLC30A8 that increase diabetes risk and impair ß-cell function, and test whether zinc intake modifies this risk. DESIGN/OUTCOME: We sequenced exons in SLC30A8 in 380 Diabetes Prevention Program (DPP) participants and identified 44 novel variants, which were genotyped in 3445 DPP participants and tested for association with diabetes incidence and measures of insulin secretion and processing. We examined individual common variants and used gene burden tests to test 39 rare variants in aggregate. RESULTS: We detected a near-nominal association between a rare-variant genotype risk score and diabetes risk. Five common variants were associated with the oral disposition index. Various methods aggregating rare variants demonstrated associations with changes in oral disposition index and insulinogenic index during year 1 of follow-up. We did not find a clear interaction of zinc intake with genotype on diabetes incidence. CONCLUSIONS: Individual common and an aggregate of rare genetic variation in SLC30A8 are associated with measures of ß-cell function in the DPP. Exploring rare variation may complement ongoing efforts to uncover the genetic influences that underlie complex diseases.


Subject(s)
Cation Transport Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Insulin-Secreting Cells/metabolism , Polymorphism, Single Nucleotide , Adult , Alleles , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Incidence , Insulin/metabolism , Insulin Secretion , Male , Middle Aged , Zinc Transporter 8
20.
Diabetes Care ; 36(1): 13-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22933432

ABSTRACT

OBJECTIVE: To examine whether diabetes genetic risk testing and counseling can improve diabetes prevention behaviors. RESEARCH DESIGN AND METHODS: We conducted a randomized trial of diabetes genetic risk counseling among overweight patients at increased phenotypic risk for type 2 diabetes. Participants were randomly allocated to genetic testing versus no testing. Genetic risk was calculated by summing 36 single nucleotide polymorphisms associated with type 2 diabetes. Participants in the top and bottom score quartiles received individual genetic counseling before being enrolled with untested control participants in a 12-week, validated, diabetes prevention program. Middle-risk quartile participants were not studied further. We examined the effect of this genetic counseling intervention on patient self-reported attitudes, program attendance, and weight loss, separately comparing higher-risk and lower-risk result recipients with control participants. RESULTS: The 108 participants enrolled in the diabetes prevention program included 42 participants at higher diabetes genetic risk, 32 at lower diabetes genetic risk, and 34 untested control subjects. Mean age was 57.9 ± 10.6 years, 61% were men, and average BMI was 34.8 kg/m(2), with no differences among randomization groups. Participants attended 6.8 ± 4.3 group sessions and lost 8.5 ± 10.1 pounds, with 33 of 108 (30.6%) losing ≥5% body weight. There were few statistically significant differences in self-reported motivation, program attendance, or mean weight loss when higher-risk recipients and lower-risk recipients were compared with control subjects (P > 0.05 for all but one comparison). CONCLUSIONS: Diabetes genetic risk counseling with currently available variants does not significantly alter self-reported motivation or prevention program adherence for overweight individuals at risk for diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/prevention & control , Genetic Counseling , Aged , Female , Genetic Testing , Humans , Male , Middle Aged , Motivation , Overweight
SELECTION OF CITATIONS
SEARCH DETAIL