Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Ther ; 31(4): 970-985, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36641622

ABSTRACT

Nonsense mutations are responsible for around 10% of cases of genetic diseases, including cystic fibrosis. 2,6-diaminopurine (DAP) has recently been shown to promote efficient readthrough of UGA premature stop codons. In this study, we show that DAP can correct a nonsense mutation in the Cftr gene in vivo in a new CF mouse model, in utero, and through breastfeeding, thanks, notably, to adequate pharmacokinetic properties. DAP turns out to be very stable in plasma and is distributed throughout the body. The ability of DAP to correct various endogenous UGA nonsense mutations in the CFTR gene and to restore its function in mice, in organoids derived from murine or patient cells, and in cells from patients with cystic fibrosis reveals the potential of such readthrough-stimulating molecules in developing a therapeutic approach. The fact that correction by DAP of certain nonsense mutations reaches a clinically relevant level, as judged from previous studies, makes the use of this compound all the more attractive.


Subject(s)
Codon, Nonsense , Cystic Fibrosis , Mice , Animals , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Codon, Terminator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics
2.
Nat Commun ; 11(1): 1509, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198346

ABSTRACT

Nonsense mutations cause about 10% of genetic disease cases, and no treatments are available. Nonsense mutations can be corrected by molecules with nonsense mutation readthrough activity. An extract of the mushroom Lepista inversa has recently shown high-efficiency correction of UGA and UAA nonsense mutations. One active constituent of this extract is 2,6-diaminopurine (DAP). In Calu-6 cancer cells, in which TP53 gene has a UGA nonsense mutation, DAP treatment increases p53 level. It also decreases the growth of tumors arising from Calu-6 cells injected into immunodeficient nude mice. DAP acts by interfering with the activity of a tRNA-specific 2'-O-methyltransferase (FTSJ1) responsible for cytosine 34 modification in tRNATrp. Low-toxicity and high-efficiency UGA nonsense mutation correction make DAP a good candidate for the development of treatments for genetic diseases caused by nonsense mutations.


Subject(s)
2-Aminopurine/analogs & derivatives , 2-Aminopurine/pharmacology , Codon, Nonsense/drug effects , Drug Discovery , Drug Screening Assays, Antitumor , Mutation/drug effects , Animals , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Genes, p53/genetics , HEK293 Cells , HeLa Cells , Humans , Lepisma/chemistry , Mice , Mice, Nude , RNA, Transfer/genetics , tRNA Methyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL