Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34019795

ABSTRACT

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.


Subject(s)
Antibodies, Neutralizing/immunology , HIV-1/immunology , Immunoglobulin Fab Fragments/immunology , Polysaccharides/immunology , SARS-CoV-2/immunology , Simian Immunodeficiency Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Dimerization , Epitopes/immunology , Glycosylation , HIV Antibodies/immunology , HIV Infections/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Macaca mulatta , Polysaccharides/chemistry , Receptors, Antigen, B-Cell/chemistry , Simian Immunodeficiency Virus/genetics , Vaccines/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
2.
Cell ; 165(4): 813-26, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27114034

ABSTRACT

The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer.


Subject(s)
HIV-1/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Crystallography, X-Ray , Glycosylation , HIV-1/classification , HIV-1/immunology , Immune Evasion , Models, Molecular , Molecular Dynamics Simulation , Polysaccharides/analysis , Polysaccharides/metabolism
3.
Immunity ; 54(4): 769-780.e6, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33823129

ABSTRACT

An effective vaccine for respiratory syncytial virus (RSV) is an unrealized public health goal. A single dose of the prefusion-stabilized fusion (F) glycoprotein subunit vaccine (DS-Cav1) substantially increases serum-neutralizing activity in healthy adults. We sought to determine whether DS-Cav1 vaccination induces a repertoire mirroring the pre-existing diversity from natural infection or whether antibody lineages targeting specific epitopes predominate. We evaluated RSV F-specific B cell responses before and after vaccination in six participants using complementary B cell sequencing methodologies and identified 555 clonal lineages. DS-Cav1-induced lineages recognized the prefusion conformation of F (pre-F) and were genetically diverse. Expressed antibodies recognized all six antigenic sites on the pre-F trimer. We identified 34 public clonotypes, and structural analysis of two antibodies from a predominant clonotype revealed a common mode of recognition. Thus, vaccination with DS-Cav1 generates a diverse polyclonal response targeting the antigenic sites on pre-F, supporting the development and advanced testing of pre-F-based vaccines against RSV.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Cell Line , Cell Line, Tumor , Child , Child, Preschool , Cohort Studies , Epitopes/immunology , Female , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Middle Aged , Vaccination/methods , Viral Fusion Proteins/immunology , Young Adult
4.
Immunity ; 48(3): 500-513.e6, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29548671

ABSTRACT

Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center. Somatic hypermutation occurred preferentially at antibody residues that interacted with these glycans, suggesting somatic development of glycan recognition. Resistance to VRC-PG05 in donor #74 involved shifting of glycan-N448 to N446 or mutation of glycan-proximal residue E293. HIV-1 neutralization can thus be achieved at the silent face center by glycan-recognizing antibody; along with other known epitopes, the VRC-PG05 epitope completes coverage by neutralizing antibody of all major exposed regions of the prefusion closed trimer.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Polysaccharides/immunology , Amino Acid Sequence , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Antigens, Viral/chemistry , Antigens, Viral/immunology , Binding Sites , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Glycopeptides/chemistry , Glycopeptides/immunology , Glycosylation , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Antibodies/metabolism , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , Humans , Models, Molecular , Molecular Conformation , Polysaccharides/chemistry , Protein Binding/immunology , Somatic Hypermutation, Immunoglobulin/immunology , Structure-Activity Relationship
5.
J Virol ; 97(5): e0160422, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37098956

ABSTRACT

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Animals , Guinea Pigs , Mice , HIV Antibodies , Immunoglobulin Isotypes , Vaccination , Peptides , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , env Gene Products, Human Immunodeficiency Virus , HIV Infections/prevention & control
6.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34551978

ABSTRACT

Human metapneumovirus (HMPV) is a major cause of respiratory disease worldwide, particularly among children and the elderly. Although there is no licensed HMPV vaccine, promising candidates have been identified for related pneumoviruses based on the structure-based stabilization of the fusion (F) glycoprotein trimer, with prefusion-stabilized F glycoprotein trimers eliciting significantly higher neutralizing responses than their postfusion F counterparts. However, immunization with HMPV F trimers in either prefusion or postfusion conformations has been reported to elicit equivalent neutralization responses. Here we investigate the impact of stabilizing disulfides, especially interprotomer disulfides (IP-DSs) linking protomers of the F trimer, on the elicitation of HMPV-neutralizing responses. We designed F trimer disulfides, screened for their expression, and used electron microscopy (EM) to confirm their formation, including that of an unexpected postfusion variant. In mice, IP-DS-stabilized prefusion and postfusion HMPV F elicited significantly higher neutralizing responses than non-IP-DS-stabilized HMPV Fs. In macaques, the impact of IP-DS stabilization was more measured, although IP-DS-stabilized variants of either prefusion or postfusion HMPV F induced neutralizing responses many times the average titers observed in a healthy human cohort. Serological and absorption-based analyses of macaque responses revealed elicited HMPV-neutralizing responses to be absorbed differently by IP-DS-containing and by non-IP-DS-containing postfusion Fs, suggesting IP-DS stabilization to alter not only the immunogenicity of select epitopes but their antigenicity as well. We speculate the observed increase in immunogenicity by IP-DS trimers to be related to reduced interprotomer flexibility within the HMPV F trimer.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Disulfides/chemistry , Epitopes/immunology , Glycoproteins/immunology , Metapneumovirus/immunology , Mutation , Animals , Glycoproteins/genetics , Humans , Immunization , Macaca , Metapneumovirus/genetics , Mice , Promoter Regions, Genetic
7.
Nucleic Acids Res ; 49(20): 11690-11707, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34725692

ABSTRACT

Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.


Subject(s)
Genomic Instability , Homologous Recombination , Telomere Shortening/genetics , Cells, Cultured , DNA Damage , DNA End-Joining Repair , Humans , Rad51 Recombinase/metabolism
8.
J Virol ; 95(23): e0131321, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34549975

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to growing concerns over increased transmissibility and the ability of some variants to partially escape immunity. Sera from participants immunized on a prime-boost schedule with the mRNA-1273 COVID-19 vaccine were tested for neutralizing activity against several SARS-CoV-2 variants, including variants of concern (VOCs) and variants of interest (VOIs), compared to neutralization of the wild-type SARS-CoV-2 virus (designated D614G). Results showed minimal, statistically nonsignificant effects on neutralization titers against the B.1.1.7 (Alpha) variant (1.2-fold reduction compared with D614G); other VOCs, such as B.1.351 (Beta, including B.1.351-v1, B.1.351-v2, and B.1.351-v3), P.1 (Gamma), and B.1.617.2 (Delta), showed significantly decreased neutralization titers ranging from 2.1-fold to 8.4-fold reductions compared with D614G, although all remained susceptible to mRNA-1273-elicited serum neutralization. IMPORTANCE In light of multiple variants of SARS-CoV-2 that have been documented globally during the COVID-19 pandemic, it remains important to continually assess the ability of currently available vaccines to confer protection against newly emerging variants. Data presented herein indicate that immunization with the mRNA-1273 COVID-19 vaccine produces neutralizing antibodies against key emerging variants tested, including variants of concern and variants of interest. While the serum neutralization elicited by mRNA-1273 against most variants tested was reduced compared with that against the wild-type virus, the level of neutralization is still expected to be protective. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Viral/immunology , Female , Humans , Male , Mutation , Neutralization Tests , Vaccination
9.
PLoS Biol ; 17(6): e3000328, 2019 06.
Article in English | MEDLINE | ID: mdl-31206510

ABSTRACT

Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic "star" nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes.


Subject(s)
AIDS Vaccines/immunology , HIV-1/immunology , Nanoparticles/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , Epitopes/immunology , Female , HIV Envelope Protein gp120/chemistry , HIV Infections/immunology , HIV Seropositivity/immunology , Macaca mulatta , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Peptides , Primates
10.
Proc Natl Acad Sci U S A ; 116(8): 3229-3238, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718403

ABSTRACT

Human and simian immunodeficiency viruses (HIV/SIVs) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4+ T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, and P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained, protecting chimpanzees against infection with SIVcpz and other SIVs to which they are exposed.


Subject(s)
CD4 Antigens/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/genetics , Viral Envelope Proteins/genetics , Animals , CD4 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Evolution, Molecular , Genetic Variation/immunology , HIV/genetics , HIV/pathogenicity , Humans , Pan troglodytes/genetics , Pan troglodytes/immunology , Polysaccharides/genetics , Polysaccharides/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Viral Envelope Proteins/immunology
11.
Proc Natl Acad Sci U S A ; 115(48): 12265-12270, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30420505

ABSTRACT

Parainfluenza virus types 1-4 (PIV1-4) are highly infectious human pathogens, of which PIV3 is most commonly responsible for severe respiratory illness in newborns, elderly, and immunocompromised individuals. To obtain a vaccine effective against all four PIV types, we engineered mutations in each of the four PIV fusion (F) glycoproteins to stabilize their metastable prefusion states, as such stabilization had previously enabled the elicitation of high-titer neutralizing antibodies against the related respiratory syncytial virus. A cryoelectron microscopy structure of an engineered PIV3 F prefusion-stabilized trimer, bound to the prefusion-specific antibody PIA174, revealed atomic-level details for how introduced mutations improved stability as well as how a single PIA174 antibody recognized the trimeric apex of prefusion PIV3 F. Nine combinations of six newly identified disulfides and two cavity-filling mutations stabilized the prefusion PIV3 F immunogens and induced 200- to 500-fold higher neutralizing titers in mice than were elicited by PIV3 F in the postfusion conformation. For PIV1, PIV2, and PIV4, we also obtained stabilized prefusion Fs, for which prefusion versus postfusion titers were 2- to 20-fold higher. Elicited murine responses were PIV type-specific, with little cross-neutralization of other PIVs. In nonhuman primates (NHPs), quadrivalent immunization with prefusion-stabilized Fs from PIV1-4 consistently induced potent neutralizing responses against all four PIVs. For PIV3, the average elicited NHP titer from the quadrivalent immunization was more than fivefold higher than any titer observed in a cohort of over 100 human adults, highlighting the ability of a prefusion-stabilized immunogen to elicit especially potent neutralization.


Subject(s)
Parainfluenza Virus 1, Human/immunology , Parainfluenza Virus 2, Human/immunology , Parainfluenza Virus 3, Human/immunology , Parainfluenza Virus 4, Human/immunology , Respirovirus Infections/immunology , Viral Fusion Proteins/chemistry , Viral Vaccines/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cryoelectron Microscopy , Female , Humans , Macaca mulatta , Male , Mice , Parainfluenza Virus 1, Human/chemistry , Parainfluenza Virus 1, Human/genetics , Parainfluenza Virus 2, Human/chemistry , Parainfluenza Virus 2, Human/genetics , Parainfluenza Virus 3, Human/chemistry , Parainfluenza Virus 3, Human/genetics , Parainfluenza Virus 4, Human/chemistry , Parainfluenza Virus 4, Human/genetics , Respiratory Syncytial Virus Infections , Respirovirus Infections/prevention & control , Respirovirus Infections/virology , Viral Fusion Proteins/administration & dosage , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology
12.
Nature ; 514(7523): 455-61, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25296255

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.


Subject(s)
HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Cohort Studies , Crystallography, X-Ray , Genetic Variation , Glycosylation , HIV Antibodies/immunology , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/genetics , HIV Infections/immunology , Humans , Immune Evasion , Membrane Fusion , Models, Molecular , Molecular Sequence Data , Polysaccharides/chemistry , Polysaccharides/immunology , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/immunology , Structural Homology, Protein , Virus Internalization
14.
Morphologie ; 102(339): 263-275, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30245167

ABSTRACT

The inferior alveolar nerve (IAN) is a sensitive branch of the trigeminal nerve. It has an intra-bone path in the mandible, inside the mandibular canal, where it is accompanied by lymph, venous and arterial vessels. We have studied the mandibular canal in human mandibles and in some laboratory animals (mice, rats, rabbits and cats). Microcomputed tomography evidenced that the walls of the canal are made with thin plates of trabecular bone with numerous fenestrations. This aspect is evidenced in dentate subjects and become more evident in edentulous subjects with atrophy of the alveolar bone. In rats and mice, the wall of the canal is also clearly composed of trabecular plates coming from the surrounding alveolar bone of the mandible. In the rabbit, similar findings are also observed but the trajectory of the canal is more difficult to identify. In the cat, the floor of the canal is composed of the cortical bone from the basilar cortex of the mandible and the roof has a trabecular nature. Vascular injections of gelatin-barium evidenced the arterial trajectories inside the bone in rats and humans. Undecalcified bone sections in human evidenced the histological aspect of the IAN and its connective sheets. Some nervous bundles can be observed outside the epineurium. Bone remodeling is observed on the wall of the mandibular canal. These descriptive findings have a clinical relevance in dental implantology or mandibular surgery.


Subject(s)
Cancellous Bone/diagnostic imaging , Cortical Bone/diagnostic imaging , Mandible/diagnostic imaging , Mandibular Nerve/diagnostic imaging , X-Ray Microtomography , Animals , Bone Remodeling , Cancellous Bone/anatomy & histology , Cancellous Bone/physiology , Cats , Cortical Bone/anatomy & histology , Cortical Bone/physiology , Humans , Imaging, Three-Dimensional , Mandible/innervation , Mice , Models, Anatomic , Rabbits , Rats , Rats, Wistar
15.
Int J Cancer ; 141(11): 2318-2328, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28779483

ABSTRACT

The purpose of this study was to determine the prognostic value and oncogenic pathways associated to miRNA expression in squamous cell carcinoma of the oral tongue and to link these miRNA candidates with potential gene targets. We performed a miRNA screening within our institutional cohort (n = 58 patients) and reported five prognostic targets including a cluster of four co-expressed miRNAs (miR-18a, miR-92a, miR-103, and miR-205). Multivariate analysis showed that expression of miR-548b (p = 0.007) and miR-18a (p = 0.004, representative of co-expressed miRNAs) are independent prognostic markers for squamous cell carcinoma of the oral tongue. These findings were validated in The Cancer Genome Atlas (TCGA) cohort (n = 131) for both miRNAs (miR-548b: p = 0.027; miR-18a: p = 0.001). Bioinformatics analysis identified PTEN and ACTN4 as direct targets of the four co-expressed miRNAs and miR-548b, respectively. Correlations between the five identified miRNAs and their respective targeted genes were validated in the two merged cohorts and were concordantly significant (miR-18a/PTEN: p < 0.0001; miR-92a/PTEN: p = 0.0008; miR-103/PTEN: p = 0.008; miR-203/PTEN: p = 0.019; miR-548b/ACTN4: p = 0.009).


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic/genetics , Head and Neck Neoplasms/pathology , MicroRNAs/genetics , Tongue Neoplasms/pathology , Actinin/metabolism , Aged , Area Under Curve , Biomarkers, Tumor/analysis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Female , Fluorescent Antibody Technique , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , PTEN Phosphohydrolase/metabolism , Prognosis , ROC Curve , Real-Time Polymerase Chain Reaction , Squamous Cell Carcinoma of Head and Neck , Tongue Neoplasms/genetics , Tongue Neoplasms/mortality
17.
Can Vet J ; 58(9): 926-930, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28878415

ABSTRACT

This report describes a rare case of gastric impaction caused by a trichophytobezoar in a foal. This case highlights the difficulty in diagnosing this condition and reports surgical removal via a gastrotomy after failure of medical treatment.


Ablation chirurgicale d'un trichophytobézoar gastrique chez un poulain. Ce rapport décrit un rare cas d'obstruction gastrique causé par un trichophytobézoar chez un poulain. Ce cas souligne la difficulté à diagnostiquer cette affection et fait rapport sur l'ablation chirurgicale lors d'une gastrotomie après l'échec du traitement médical.(Traduit par Isabelle Vallières).


Subject(s)
Bezoars/surgery , Horses , Stomach/pathology , Animals , Stomach/surgery
18.
Morphologie ; 101(334): 113-119, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28571762

ABSTRACT

Reconstruction of bone defects prior to implant placement now involves synthetic substitutes such as ß-TCP because of its ability to promote bone remodeling. Its capacity to be progressively substituted by the patient's bone allows to regenerate a dense bone volume. In addition, its availability in large quantities, avoiding the morbidity observed with harvesting autogenous bone, widens the operative indications. In this paper, the main indications of ß-TCP in maxillofacial surgery (dentistry, parodontology and dental implant surgery) are reviewed. They include periodontal bone disease, bone disjunction, pre-implant surgery (sinus floor elevation and lateralization of the inferior alveolar nerve).


Subject(s)
Biocompatible Materials/therapeutic use , Bone Substitutes/therapeutic use , Calcium Phosphates/therapeutic use , Jaw/physiology , Periodontal Diseases/surgery , Surgery, Oral/methods , Bone Regeneration/drug effects , Bone Substitutes/pharmacology , Bone Transplantation/adverse effects , Calcium Phosphates/pharmacology , Dental Implantation , Dental Implants , Humans , Orthognathic Surgical Procedures
19.
Rev Med Brux ; 38(4): 284-290, 2017.
Article in French | MEDLINE | ID: mdl-28981231

ABSTRACT

The economic environment has pushed our political leaders to severely limit the health care spending. Belgian nephrologists have signed an agreement to attain more than 40 % of " alternative " dialysis techniques such as peritoneal dialysis (PD) and home hemodialysis (HHD). They will become unavoidable and major future therapy modalities. This article summarizes PD and HDD techniques in order to help health professionals and to inform them about innovative research in home dialysis techniques. It is a non exhaustive list of the many advantages, if not superiority, of the treatment of end stage renal disease (ESRD) at home instead of in-center HD. These therapies, which can be used before kidney transplantation, complete the panel of possible treatments of ESRD for health care providers.


La conjoncture économique pousse nos instances dirigeantes à réaliser des coupes sombres dans le budget des soins de santé. Les néphrologues belges, par convention, se sont engagés à réaliser plus de 40 % de modalités d'épuration extra-rénales dites " alternatives " à l'hémodialyse en centre hospitalier. Techniques phares de la dialyse à domicile, la dialyse péritonéale (DP) d'une part et l'hémodialyse à domicile (HDD) d'autre part, deviennent donc incontournables et connaîtront un essor sans précédent. Cet article aborde de manière générale la DP et l'HDD afin d'informer les acteurs de terrain. Il est aussi l'occasion de faire le point sur les diverses nouveautés et avancées en la matière. Ceci constitue une revue non exhaustive des nombreux avantages, si pas de la supériorité d'un traitement de l'insuffisance rénale terminale (IRT) à la maison par rapport à l'hémodialyse en centre hospitalier. Ces thérapies, en préambule à une éventuelle transplantation rénale, complètent l'arsenal mis à la disposition du soignant.

20.
J Virol ; 89(10): 5318-29, 2015 May.
Article in English | MEDLINE | ID: mdl-25740988

ABSTRACT

UNLABELLED: Similar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained. IMPORTANCE: The trimeric HIV-1 envelope glycoprotein (Env) is the sole target of virus-directed neutralizing antibody responses and a primary focus of vaccine design. Soluble mimics of Env have proven challenging to obtain and have been thought to require proteolytic cleavage into two-component subunits, gp120 and gp41, to achieve structural and antigenic mimicry of mature Env spikes on virions. Here we show that replacement of the cleavage site between gp120 and gp41 in a lead soluble gp140 construct, BG505.SOSIP, with flexible linkers can result in molecules that do not require cleavage to fold efficiently into the mature closed state. Our results provide insights into the impact of cleavage on HIV-1 Env folding. In some contexts such as genetic immunization, optimized cleavage-independent soluble gp140 constructs may have utility over the parental BG505.SOSIP, as they would not require furin cleavage to achieve mimicry of mature Env spikes on virions.


Subject(s)
HIV-1/immunology , HIV-1/physiology , env Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Substitution , HIV Antibodies , HIV Antigens/chemistry , HIV Antigens/genetics , HIV Antigens/ultrastructure , HIV-1/genetics , Humans , Microscopy, Electron, Transmission , Models, Molecular , Molecular Mimicry , Mutagenesis, Site-Directed , Protein Folding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL