Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Immunity ; 54(8): 1788-1806.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34166622

ABSTRACT

Lymphoid stromal cells (LSCs) are essential organizers of immune responses. We analyzed tonsillar tissue by combining flow cytometry, in situ imaging, RNA sequencing, and functional assays, defining three distinct human LSC subsets. The integrin CD49a designated perivascular stromal cells exhibiting features of local committed LSC precursors and segregated cytokine and chemokine-producing fibroblastic reticular cells (FRCs) supporting B and T cell survival. The follicular dendritic cell transcriptional profile reflected active responses to B cell and non-B cell stimuli. We therefore examined the effect of B cell stimuli on LSCs in follicular lymphoma (FL). FL B cells interacted primarily with CD49a+ FRCs. Transcriptional analyses revealed LSC reprogramming in situ downstream of the cytokines tumor necrosis factor (TNF) and transforming growth factor ß (TGF-ß), including increased expression of the chemokines CCL19 and CCL21. Our findings define human LSC populations in healthy tissue and reveal bidirectional crosstalk between LSCs and malignant B cells that may present a targetable axis in lymphoma.


Subject(s)
B-Lymphocytes/immunology , Dendritic Cells/immunology , Lymphoma, Follicular/immunology , Lymphoma, Follicular/pathology , Palatine Tonsil/immunology , Stromal Cells/immunology , Cells, Cultured , Chemokine CCL19/metabolism , Chemokine CCL21/metabolism , Humans , Integrin alpha1/metabolism , Palatine Tonsil/cytology , Signal Transduction/immunology , Stromal Cells/cytology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
3.
Blood ; 129(18): 2507-2518, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28202459

ABSTRACT

Follicular lymphoma (FL) is the most frequent indolent lymphoma and is characterized by the accumulation of germinal center-derived malignant B cells engaged in a bidirectional crosstalk with their supportive microenvironment in invaded lymph nodes (LNs) and bone marrow (BM). T follicular helper (TFH) cells and infiltrating stromal cells have been shown to favor FL B-cell growth, but the mechanisms of their protumoral effect and how the LN/BM microenvironment is converted into a lymphoma-permissive cell niche remain poorly understood. We demonstrated here that FL-infiltrating LN and BM stromal cells overexpressed CXCL12 in situ. Interleukin-4 high (IL-4hi) FL-TFH cells, unlike FL B cells themselves, triggered CXCL12 upregulation in human stromal cell precursors. In agreement, expression of CXCL12 was associated with IL-4 expression and signaling within the FL BM and LN niches. This IL-4/CXCL12 axis was amplified in activated lymphoid stromal cells as shown in our in vitro model of human lymphoid stroma differentiation and in an inducible mouse model of ectopic lymphoid organ formation. Finally, CXCL12 triggered primary FL B-cell activation, migration, and adhesion, a process antagonized by BTK and PI3K inhibitors. These data identified the IL-4/CXCL12 loop as a previously unrecognized pathway involved in lymphoid stroma polarization and as a potential therapeutic target in FL patients.


Subject(s)
Bone Marrow/immunology , Chemokine CXCL12/immunology , Interleukin-4/immunology , Lymph Nodes/immunology , Lymphoma, Follicular/immunology , Signal Transduction/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Bone Marrow/pathology , Cell Movement/genetics , Cell Movement/immunology , Chemokine CXCL12/genetics , Female , Humans , Interleukin-4/genetics , Lymph Nodes/pathology , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Male , Mice , Mice, Knockout , Signal Transduction/genetics , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
4.
Eur Respir J ; 52(2)2018 08.
Article in English | MEDLINE | ID: mdl-29946009

ABSTRACT

Exaggerated release of neutrophil extracellular traps (NETs) along with decreased NET clearance and inability to remove apoptotic cells (efferocytosis) may contribute to sustained inflammation in acute respiratory distress syndrome (ARDS). Recent studies in experimental models of ARDS have revealed the crosstalk between AMP-activated protein kinase (AMPK) and high-mobility group box 1 (HMGB1), which may contribute to effectiveness of efferocytosis, thereby reducing inflammation and ARDS severity.We investigated neutrophil and NET clearance by macrophages from control and ARDS patients and examined how bronchoalveolar lavage (BAL) fluid from control and ARDS patients could affect NET formation and efferocytosis. Metformin (an AMPK activator) and neutralising antibody against HMGB1 were applied to improve efferocytosis and NET clearance.Neutrophils from ARDS patients showed significantly reduced apoptosis. Conversely, NET formation was significantly enhanced in ARDS patients. Exposure of neutrophils to ARDS BAL fluid promoted NET production, while control BAL fluid had no effect. Macrophage engulfment of NETs and apoptotic neutrophils was diminished in ARDS patients. Notably, activation of AMPK in macrophages or neutralisation of HMGB1 in BAL fluid improved efferocytosis and NET clearance.In conclusion, restoration of AMPK activity with metformin or specific neutralisation of HMGB1 in BAL fluid represent promising therapeutic strategies to decrease sustained lung inflammation during ARDS.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Extracellular Traps/metabolism , HMGB1 Protein/metabolism , Macrophages/cytology , Respiratory Distress Syndrome/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Female , Humans , Leukocyte Count , Male , Middle Aged , Neutrophils/metabolism , Phagocytosis , Pneumonia/metabolism , Respiratory Distress Syndrome/physiopathology
5.
Blood ; 126(16): 1911-20, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26272216

ABSTRACT

Follicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface immunoglobulin M (IgM) BCR despite an active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these 2 FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM(+) FL B cells activated a stronger BCR signaling network than IgG(+) FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM(+) FL samples, displaying highly mannosylated BCR, efficiently bound dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), which could in turn trigger delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within the FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN-dependent adhesion of highly mannosylated IgM(+) FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacologic BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN-expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic targets.


Subject(s)
Cell Adhesion Molecules/immunology , Gene Expression Regulation/immunology , Immunoglobulin M/immunology , Lectins, C-Type/immunology , Lymphoma, Follicular/immunology , Macrophages/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Cell Surface/immunology , Signal Transduction/immunology , Cell Communication/immunology , Coculture Techniques , Female , Glycosylation , Humans , Lymphoma, Follicular/pathology , Macrophages/pathology , Male , Tumor Cells, Cultured
6.
Sci Adv ; 9(48): eadh2708, 2023 12.
Article in English | MEDLINE | ID: mdl-38019914

ABSTRACT

Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation.


Subject(s)
Epigenesis, Genetic , Stromal Cells , Animals , Humans , Mice , Cell Differentiation/genetics , Inflammation , Jumonji Domain-Containing Histone Demethylases/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL