Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Anal Chem ; 95(16): 6709-6717, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37037008

ABSTRACT

Chemical characterization of complex mixtures by Nuclear Magnetic Resonance (NMR) spectroscopy is challenging due to a high degree of spectral overlap and inherently low sensitivity. Therefore, NMR experiments that reduce overlap and increase signal intensity hold immense potential for the analysis of mixtures such as biological and environmental media. Here, we introduce a 13C version of DREAMTIME (Designed Refocused Excitation And Mixing for Targets In Vivo and Mixture Elucidation) NMR, which, when analyzing 13C-enriched materials, allows the user to selectively detect only the compound(s) of interest and remove all other peaks in a 13C spectrum. Selected peaks can additionally be "focused" into sharp "spikes" to increase sensitivity. 13C-DREAMTIME is first demonstrated at high field strength (500 MHz) with simultaneous selection of eight amino acids in a 13C-enriched cell free amino acid mixture and of six metabolites in an extract of 13C-enriched green algae and demonstrated at low field strength (80 MHz) with a standard solution of 13C-d-glucose and 13C-l-phenylalanine. 13C-DREAMTIME is then applied at high-field to analyze metabolic changes in 13C-enrichedDaphnia magna after exposure to polystyrene "microplastics," as well as at low-field to track fermentation of 13C-d-glucose using wine yeast. Ultimately, 13C-DREAMTIME reduces spectral overlap as only selected compounds are recorded, resulting in the detection of analyte peaks that may otherwise not have been discernable. In combination with focusing, up to a 6-fold increase in signal intensity can be obtained for a given peak. 13C-DREAMTIME is a promising experiment type for future reaction monitoring and for tracking metabolic processes with 13C-enriched compounds.


Subject(s)
Plastics , Wine , Amino Acids , Glucose , Magnetic Resonance Spectroscopy/methods , Saccharomyces cerevisiae , Carbon Isotopes
2.
Magn Reson Chem ; 60(3): 386-397, 2022 03.
Article in English | MEDLINE | ID: mdl-34647646

ABSTRACT

Microcoils provide a cost-effective approach to improve detection limits for mass-limited samples. Single-sided planar microcoils are advantageous in comparison to volume coils, in that the sample can simply be placed on top. However, the considerable drawback is that the RF field that is produced by the coil decreases with distance from the coil surface, which potentially limits more complex multi-pulse NMR pulse sequences. Unfortunately, 1 H NMR alone is not very informative for intact biological samples due to line broadening caused by magnetic susceptibility distortions, and 1 H-13 C 2D NMR correlations are required to provide the additional spectral dispersion for metabolic assignments in vivo or in situ. To our knowledge, double-tuned single-sided microcoils have not been applied for the 2D 1 H-13 C analysis of intact 13 C enriched biological samples. Questions include the following: Can 1 H-13 C 2D NMR be performed on single-sided planar microcoils? If so, do they still hold sensitivity advantages over conventional 5 mm NMR technology for mass limited samples? Here, 2D 1 H-13 C HSQC, HMQC, and HETCOR variants were compared and then applied to 13 C enriched broccoli seeds and Daphnia magna (water fleas). Compared to 5 mm NMR probes, the microcoils showed a sixfold improvement in mass sensitivity (albeit only for a small localized region) and allowed for the identification of metabolites in a single intact D. magna for the first time. Single-sided planar microcoils show practical benefit for 1 H-13 C NMR of intact biological samples, if localized information within ~0.7 mm of the 1 mm I.D. planar microcoil surface is of specific interest.


Subject(s)
Daphnia , Magnetic Resonance Imaging , Animals , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular
3.
Anal Chem ; 92(14): 9856-9865, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32551506

ABSTRACT

In vivo nuclear magnetic resonance (NMR) is a powerful analytical tool for probing complex biological processes inside living organisms. However, due to magnetic susceptibility broadening, which produces broad lines in one-dimensional NMR, 1H-13C two-dimensional (2D) NMR is required for metabolite monitoring in vivo. As each 2D experiment is time-consuming, often hours, this limits the temporal resolution over which in vivo processes can be monitored. Furthermore, to understand concentration-dependent responses, studies are traditionally repeated using different contaminant and toxin concentrations, which can make studies prohibitively long (potentially months). In this study, time-resolved non-uniform sampling NMR is performed in the presence of a contaminant concentration sweep. The result is that the lowest concentration that elicits a metabolic response can be rapidly detected, while the metabolic pathways impacted provide information about the toxic mode of action of the toxin. The lowest concentration of bisphenol A (BPA) that induces a response was ∼0.1 mg/L (detected in just 16 min), while changes in different metabolites suggest a complex multipathway response that leads to protein degradation at higher BPA concentrations. This proof of concept shows it is possible, on the basis of "real-time" organism responses, to identify the sublethal concentration at which a toxin impacts an organism and thus represents an essential analytical tool for the next generation of toxicity-based research and monitoring.


Subject(s)
Benzhydryl Compounds/toxicity , Daphnia/drug effects , Decapoda/drug effects , Magnetic Resonance Imaging/methods , Phenols/toxicity , Animals , Benzhydryl Compounds/administration & dosage , Dose-Response Relationship, Drug , Estrogens, Non-Steroidal/administration & dosage , Estrogens, Non-Steroidal/toxicity , Phenols/administration & dosage
4.
Analyst ; 145(17): 5787-5800, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32691782

ABSTRACT

Daphnia (freshwater fleas) are among the most widely used organisms in regulatory aquatic toxicology/ecology, while their recent listing as an NIH model organism is stimulating research for understanding human diseases and processes. Daphnia are small enough to fit inside high field NMR spectrometers and can be kept alive indefinitely using flow systems that deliver food and oxygen. As such, in vivo NMR holds the potential to monitor when/if environmental stress is occurring, understand "why" chemicals are toxic (biochemical pathways impacted and toxic-mode-of-action), and differentiate between a temporary flux response (i.e. return to homeostasis) and a permanent change in biochemistry (likely a precursor to disease). At present however, such studies are limited as the in vivo NMR data of Daphnia are highly complex and the lack of spectral assignments makes extracting metabolic information difficult. In this study, Daphnia are 13C enriched to >97% 13C and numerous 1H and 13C 1D, 2D, and 3D NMR approaches are combined to provide, as complete as possible, an assignment of the Daphnia magna metabolome in vivo. Assignments are transferred (where possible) back to line narrowed susceptibility suppressed 1H 1D NMR spectra in order to permit the maximum amount of information to be gained in the future without the need for 13C enrichment. To our knowledge, this work represents the first time a comprehensive metabolic assignment of any small living organism has been performed using high field flow-based NMR.


Subject(s)
Metabolome , Water Pollutants, Chemical , Animals , Daphnia , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy
5.
Anal Chem ; 91(23): 15000-15008, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31670507

ABSTRACT

In vivo nuclear magnetic resonance (NMR) is rapidly evolving as a critical tool as it offers real-time metabolic information, which is crucial for delineating complex toxic response pathways in living systems. Organisms such as Daphnia magna (water fleas) and Hyalella azteca (freshwater shrimps) are commonly 13C-enriched to increase the signal in NMR experiments. A key goal of in vivo NMR is to monitor how molecules (nutrients, contaminants, or drugs) are metabolized. Conventionally, these studies would normally involve using a 13C-enriched probe molecule and feeding this to an organism at natural abundance, in turn allowing the fate of the probe molecule to be selectively analyzed. The drawback of such an approach is that there is a limited range of 13C-enriched probe molecules, and if available, they are extremely cost prohibitive. Uniquely, when utilizing 13C organisms, a reverse strategy of isotopic filtering becomes possible. The concept described here uses 1H detection in combination with a 13C filter on living organisms. The purpose is to suppress all 1H signals from the organism (i.e., 1H attached to 13C), leaving only the probe molecule (1H attached to 12C). Because the probe molecule can be selectively observed using this approach, it then makes it possible to follow and discern processes such as bioconversion, bioaccumulation, and excretion in vivo. As the approach uses 1H detection, it provides excellent detection limits in the nanogram range. In this article, the approach is introduced, optimized on standards, and then applied to follow nicotine biotransformation and lipid assimilation in vivo to demonstrate the concept.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Animals , Biotransformation , Carbon-13 Magnetic Resonance Spectroscopy/methods , Daphnia/metabolism , Decapoda/metabolism , Lipid Mobilization , Nicotine/pharmacokinetics , Proton Magnetic Resonance Spectroscopy/methods
6.
Anal Chim Acta ; 1138: 168-180, 2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33161978

ABSTRACT

In-vivo Nuclear Magnetic Resonance (NMR) spectroscopy is a unique and powerful approach for understanding sublethal toxicity, recovery, and elucidating a contaminant's toxic mode of action. However, magnetic susceptibility distortions caused by the organisms, along with sample complexity, lead to broad and overlapping 1D NMR spectra. As such, 2D NMR in combination with 13C enrichment (to increase signal) is a requirement for metabolite assignment and monitoring using high field in-vivo flow based NMR. Despite this, it is not clear which NMR experiment and probe combinations are the most appropriate for such studies. In terms of experiments, 1H-13C Heteronuclear Single Quantum Coherence (HSQC) and 13C-1H Heteronuclear Correlation Spectroscopy (HETCOR) experiments are logical choices for molecular fingerprinting. HSQC uses 1H for detection and thus will be the most sensitive, while HETCOR uses 13C for detection, which benefits from improved spectral dispersion (i.e. a larger chemical shift range) and avoids detection of the huge in-vivo water signal which can be problematic in HSQC. NMR probes are available in two variations, inverse (inner coil 1H) which is best suited to 1H detection and observe (inner coil 13C) which is ideal for 13C detection. To further complicate matters, the low biomass in many aquatic organisms makes cryoprobes desirable, however, changing cryoprobes is time prohibitive, requiring at least a day to warmup and cool down, meaning only a single probe can be used to monitor "real-time" in-vivo responses. The key questions become: Is it best to use HSQC on an inverse cryoprobe and accept a compromised HETCOR? Or is it best to use HETCOR on an observe cryoprobe and accept a compromised HSQC? Here these questions are explored using living 13C enriched Daphnia as the test case. The number of metabolites identified across the different probe/experiment combinations are compared over a range of experiment times. Finally, the probes/experiments are compared to monitor an anoxic stress response. Both probes and experiments prove to be quite robust, albeit HSQC identified slightly more metabolites in most cases. HETCOR did nearly as-well and because of the lack of water complications would be the most accessible approach for researchers to apply in-vivo NMR to 13C enriched organisms, both in terms of experimental setup and flow system design. This said, when using an optimized flow system, HSQC did identify the most metabolites and an inverse probe design offers the most potential for 1H-only approaches which are continuously being developed and have the potential to eventually overcome the current limitation that requires 13C enriched organisms.


Subject(s)
Magnetic Resonance Imaging , Metabolomics , Animals , Daphnia , Magnetic Resonance Spectroscopy , Water
7.
Anal Chim Acta X ; 6: 100051, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33392494

ABSTRACT

Nuclear Magnetic Resonance (NMR) spectroscopy is a non-invasive analytical technique which allows for the study of intact samples. Comprehensive Multiphase NMR (CMP-NMR) combines techniques and hardware from solution state and solid state NMR to allow for the holistic analysis of all phases (i.e. solutions, gels and solids) in unaltered samples. This study is the first to apply CMP-NMR to deceased, intact organisms and uses 13C enriched Daphnia magna (water fleas) as an example. D. magna are commonly used model organisms for environmental toxicology studies. As primary consumers, they are responsible for the transfer of nutrients across trophic levels, and a decline in their population can potentially impact the entire freshwater aquatic ecosystem. Though in vivo research is the ultimate tool to understand an organism's most biologically relevant state, studies are limited by conditions (i.e. oxygen requirements, limited experiment time and reduced spinning speed) required to keep the organisms alive, which can negatively impact the quality of the data collected. In comparison, ex vivo CMP-NMR is beneficial in that; organisms do not need oxygen (eliminating air holes in rotor caps and subsequent evaporation); samples can be spun faster, leading to improved spectral resolution; more biomass per sample can be analyzed; and experiments can be run for longer. In turn, higher quality ex vivo NMR, can provide more comprehensive NMR assignments, which in many cases could be transferred to better understand less resolved in vivo signals. This manuscript is divided into three sections: 1) multiphase spectral editing techniques, 2) detailed metabolic assignments of 2D NMR of 13C enriched D. magna and 3) multiphase biological changes over different life stages, ages and generations of D. magna. In summary, ex vivo CMP-NMR proves to be a very powerful approach to study whole organisms in a comprehensive manner and should provide very complementary information to in vivo based research.

8.
ACS Omega ; 4(5): 9017-9028, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31459990

ABSTRACT

In vivo NMR of small 13C-enriched aquatic organisms is developing as a powerful tool to detect and explain toxic stress at the biochemical level. Amino acids are a very important category of metabolites for stress detection as they are involved in the vast majority of stress response pathways. As such, they are a useful proxy for stress detection in general, which could then be a trigger for more in-depth analysis of the metabolome. 1H-13C heteronuclear single quantum coherence (HSQC) is commonly used to provide additional spectral dispersion in vivo and permit metabolite assignment. While some amino acids can be assigned from HSQC, spectral overlap makes monitoring them in vivo challenging. Here, an experiment typically used to study protein structures is adapted for the selective detection of amino acids inside living Daphnia magna (water fleas). All 20 common amino acids can be selectively detected in both extracts and in vivo. By monitoring bisphenol-A exposure, the in vivo amino acid-only approach identified larger fluxes in a greater number of amino acids when compared to published works using extracts from whole organism homogenates. This suggests that amino acid-only NMR of living organisms may be a very sensitive tool in the detection of stress in vivo and is highly complementary to more traditional metabolomics-based methods. The ability of selective NMR experiments to help researchers to "look inside" living organisms and only detect specific molecules of interest is quite profound and paves the way for the future development of additional targeted experiments for in vivo research and monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL