Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Publication year range
1.
Cell ; 168(3): 460-472.e14, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28089356

ABSTRACT

Certain cell types function as factories, secreting large quantities of one or more proteins that are central to the physiology of the respective organ. Examples include surfactant proteins in lung alveoli, albumin in liver parenchyma, and lipase in the stomach lining. Whole-genome sequencing analysis of lung adenocarcinomas revealed noncoding somatic mutational hotspots near VMP1/MIR21 and indel hotspots in surfactant protein genes (SFTPA1, SFTPB, and SFTPC). Extrapolation to other solid cancers demonstrated highly recurrent and tumor-type-specific indel hotspots targeting the noncoding regions of highly expressed genes defining certain secretory cellular lineages: albumin (ALB) in liver carcinoma, gastric lipase (LIPF) in stomach carcinoma, and thyroglobulin (TG) in thyroid carcinoma. The sequence contexts of indels targeting lineage-defining genes were significantly enriched in the AATAATD DNA motif and specific chromatin contexts, including H3K27ac and H3K36me3. Our findings illuminate a prevalent and hitherto unrecognized mutational process linking cellular lineage and cancer.


Subject(s)
Cell Lineage , INDEL Mutation , Mutation , Neoplasms/genetics , Neoplasms/pathology , 3' Untranslated Regions , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Membrane Proteins/genetics , MicroRNAs/genetics , Middle Aged , Nucleotide Motifs , Polymorphism, Single Nucleotide , Pulmonary Surfactant-Associated Proteins/genetics
2.
Cell ; 171(3): 540-556.e25, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28988769

ABSTRACT

We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.


Subject(s)
Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Aged , Cluster Analysis , DNA Methylation , Humans , MicroRNAs/genetics , Middle Aged , Muscle, Smooth/pathology , RNA, Long Noncoding/genetics , Survival Analysis , Urinary Bladder/pathology , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/therapy
4.
Cell ; 148(5): 886-95, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22385958

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and has very few mutations that are shared between different patients. To better understand the intratumoral genetics underlying mutations of ccRCC, we carried out single-cell exome sequencing on a ccRCC tumor and its adjacent kidney tissue. Our data indicate that this tumor was unlikely to have resulted from mutations in VHL and PBRM1. Quantitative population genetic analysis indicates that the tumor did not contain any significant clonal subpopulations and also showed that mutations that had different allele frequencies within the population also had different mutation spectrums. Analyses of these data allowed us to delineate a detailed intratumoral genetic landscape at a single-cell level. Our pilot study demonstrates that ccRCC may be more genetically complex than previously thought and provides information that can lead to new ways to investigate individual tumors, with the aim of developing more effective cellular targeted therapies.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Single-Cell Analysis/methods , DNA-Binding Proteins , Exome , Gene Frequency , Humans , Male , Middle Aged , Mutation , Nuclear Proteins/genetics , Phylogeny , Pilot Projects , Principal Component Analysis , Transcription Factors/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics
5.
Blood ; 137(18): 2463-2480, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33227818

ABSTRACT

Lineage plasticity and stemness have been invoked as causes of therapy resistance in cancer, because these flexible states allow cancer cells to dedifferentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) carrying activating NOTCH1 mutations via full-length single-cell RNA sequencing (scRNA-seq) of malignant and microenvironmental cells. We identified 2 highly distinct stem-like states that critically differed with regard to cell cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrated Notch activation and were effectively eliminated in patients by Notch inhibition, whereas slow-cycling stem-like cells were Notch independent and rather relied on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we found that both stem-like states could differentiate into a more mature leukemia state with prominent immunomodulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promoted an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that expressed HAVCR2, the cognate receptor for LGALS9. Our study identified complex interactions between signaling programs, cellular plasticity, and immune programs that characterize ETP-ALL, illustrating the multidimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem seem most promising to successfully eliminate tumor cells that escape treatment through coexisting transcriptional programs.


Subject(s)
Carcinogenesis , Galectins/metabolism , Gene Expression Regulation, Leukemic , Immune Evasion , Neoplastic Stem Cells/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Single-Cell Analysis/methods , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Child , Child, Preschool , Drug Resistance, Neoplasm , Female , Follow-Up Studies , Galectins/genetics , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Infant , Male , Middle Aged , Mutation , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Prognosis , RNA-Seq/methods , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Young Adult
6.
Nature ; 509(7498): 91-5, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24670651

ABSTRACT

Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (>90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Genome, Human/genetics , Mutation/genetics , Alcohol Drinking/adverse effects , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/pathology , Cell Cycle/genetics , Chromosomes, Human, Pair 11/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Exome/genetics , Female , Genomics , Histones/metabolism , Humans , Male , MicroRNAs/genetics , Oncogenes/genetics , Phenotype , Receptors, Notch/genetics , Risk Factors , Wnt Signaling Pathway/genetics
7.
Mediators Inflamm ; 2019: 3231696, 2019.
Article in English | MEDLINE | ID: mdl-30733641

ABSTRACT

The bone marrow (BM) is not only a reservoir of hematopoietic stem cells but a repository of immunological memory cells. Further characterizing BM-resident memory T cells would be helpful to reveal the complicated relationship between the BM and immunological memory. In this study, we identified CD122high stem cell antigen-1 (Sca-1) high B cell lymphoma 2 (Bcl-2) high CD4+ stem cell-like memory T cells (TSCMs) as a distinct memory T cell subset, which preferentially reside in the BM, where they respond vigorously to blood-borne antigens. Interestingly, the natural CD4+ TSCMs homing to the BM colocalized with VCAM-1+ IL-15+ IL-7+ CXCL-12+ stromal cells. Furthermore, compared to spleen-resident CD4+ TSCMs, BM-resident TSCMs induced the production of high-affinity antibodies against influenza by B lymphocytes more efficiently. Taken together, these observations indicate that the BM provides an appropriate microenvironment for the survival of CD4+ TSCMs, which broadens our knowledge regarding the memory maintenance of antigen-specific CD4+ T lymphocytes.


Subject(s)
Antibodies, Viral/immunology , Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/cytology , Immunologic Memory , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/therapy , Animals , Ataxin-1/metabolism , CD8-Positive T-Lymphocytes/cytology , Chemokine CXCL12/metabolism , Hematopoietic Stem Cells/cytology , Interleukin-15/metabolism , Interleukin-2 Receptor beta Subunit/metabolism , Interleukin-7/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-2/metabolism , Stromal Cells , Vascular Cell Adhesion Molecule-1/metabolism
8.
Am J Hum Genet ; 93(3): 452-62, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23954164

ABSTRACT

The hypoxic conditions at high altitudes present a challenge for survival, causing pressure for adaptation. Interestingly, many high-altitude denizens (particularly in the Andes) are maladapted, with a condition known as chronic mountain sickness (CMS) or Monge disease. To decode the genetic basis of this disease, we sequenced and compared the whole genomes of 20 Andean subjects (10 with CMS and 10 without). We discovered 11 regions genome-wide with significant differences in haplotype frequencies consistent with selective sweeps. In these regions, two genes (an erythropoiesis regulator, SENP1, and an oncogene, ANP32D) had a higher transcriptional response to hypoxia in individuals with CMS relative to those without. We further found that downregulating the orthologs of these genes in flies dramatically enhanced survival rates under hypoxia, demonstrating that suppression of SENP1 and ANP32D plays an essential role in hypoxia tolerance. Our study provides an unbiased framework to identify and validate the genetic basis of adaptation to high altitudes and identifies potentially targetable mechanisms for CMS treatment.


Subject(s)
Altitude Sickness/genetics , Genome, Human/genetics , Sequence Analysis, DNA , Adult , Animals , Chronic Disease , Down-Regulation/genetics , Drosophila melanogaster/genetics , Female , Genetic Association Studies , Genetics, Population , Genomics , Humans , Hypoxia/genetics , Male , Peru , Reproducibility of Results , Survival Analysis
9.
Article in Zh | MEDLINE | ID: mdl-26541048

ABSTRACT

The cysticerci of Taenia asiatica were cultured in vitro with different concentrations of water decoction of Carpesium abrotanoides (20, 40, and 60 mg/ml). The killing effect of C. abrotanoides on T. asiatica and the morphological change of cysticerci were observed under microscope 24 hours post-culture. The water decoction of C. abrotanoides showed significant killing effect on the cysticerci. The mortality of the parasites(95.0%, 57/60) was highest in 60 mg/ml group. The dead body of cysticercus shows shrunken with the enlarged scolex, and sucker tissue degenerated.


Subject(s)
Cysticercus , Taenia , Animals , Asteraceae , Microscopy
10.
Article in Zh | MEDLINE | ID: mdl-26672229

ABSTRACT

The Taenia asiatica eggs pre-incubated with sodium hypochlorite solution for 4 min, 6 min and 8 mins were subcutaneously injected into mice with normal immune function(groups Al-A3 respectively, n=20 in each) and mice with immunosuppression (groups B1-B3, n=20 in each). All groups of mice began to show body discomfort on day 5 after infection and develop lumps on the back about on day 15. In groups Al-A3, animal death occurred during days 7-15, with a same survival rate of 95.0%(19/20) and infection rate of 89.4%(17/19), 73.6%(14/19) and 47.3%(9/19) respectively. In groups B1-B3, animal death occurred during days 7-50, with survival rate of 60%(13/20), 55%(11/20)and 55%(11/20) and infection rate of 76.9% (10/13), 54.5% (6/11) and 45.4% (5/11) respectively. After the scolex of cysticercus was evaginated with 15% pig bile, four suckers, an apparent rostellum and two distinct hook-like puncta structures were seen. These results indicate that mice with normal immune function can be used as a replacement of immunosuppressive mice to establish a T. asiatica oncosphere infection model. In addition, the T. asiatica eggs pre-incubated with sodium hypochlorite solution for 4 min have the strongest infection ability.


Subject(s)
Taenia , Taeniasis , Animals , Immune Tolerance , Mice , Sus scrofa , Swine
11.
BMC Genomics ; 15: 69, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24460898

ABSTRACT

BACKGROUND: Paclitaxel (Taxol™) is an important anticancer drug with a unique mode of action. The biosynthesis of paclitaxel had been considered restricted to the Taxus species until it was discovered in Taxomyces andreanae, an endophytic fungus of T. brevifolia. Subsequently, paclitaxel was found in hazel (Corylus avellana L.) and in several other endophytic fungi. The distribution of paclitaxel in plants and endophytic fungi and the reported sequence homology of key genes in paclitaxel biosynthesis between plant and fungi species raises the question about whether the origin of this pathway in these two physically associated groups could have been facilitated by horizontal gene transfer. RESULTS: The ability of the endophytic fungus of hazel Penicillium aurantiogriseum NRRL 62431 to independently synthesize paclitaxel was established by liquid chromatography-mass spectrometry and proton nuclear magnetic resonance. The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene candidates that may be involved in paclitaxel biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic genes in Taxus. We found that paclitaxel biosynthetic gene candidates in P. aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene transfer between this endophytic fungus and its plant host is unlikely. CONCLUSIONS: Our findings shed new light on how paclitaxel-producing endophytic fungi synthesize paclitaxel, and will facilitate metabolic engineering for the industrial production of paclitaxel from fungi.


Subject(s)
Genome, Fungal , Paclitaxel/biosynthesis , Penicillium/genetics , Acyltransferases/classification , Acyltransferases/genetics , Acyltransferases/metabolism , Base Sequence , Chromatography, High Pressure Liquid , Farnesyltranstransferase/classification , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Fungal Proteins/classification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/genetics , Gene Transfer, Horizontal , Mass Spectrometry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Paclitaxel/analysis , Penicillium/classification , Phylogeny , Sequence Analysis, RNA
12.
Int J Cancer ; 135(1): 78-87, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24310851

ABSTRACT

Primary renal cell carcinomas (pRCCs) have a high degree of intratumoral heterogeneity and are composed of multiple distinct subclones. However, it remains largely unknown that whether metastatic renal cell carcinomas (mRCCs) also have startling intratumoral heterogeneity or whether development of mRCCs is due to early dissemination or late diagnosis. To decipher the evolution of mRCC, we analyzed the multilayered molecular profiles of pRCC, local invasion of the vena cava (IVC), and distant metastasis to the brain (MB) from the same patient using whole-genome sequencing, whole-exome sequencing, DNA methylome profiling, and transcriptome sequencing. We found that mRCC had a lower degree of heterogeneity than pRCC and was likely to result from recent clonal expansion of a rare, advantageous subclone. Consequently, some key pathways that are targeted by clinically available drugs showed distinct expression patterns between pRCC and mRCC. From the genetic distances between different tumor subclones, we estimated that the progeny subclone giving rise to distant metastasis took over half a decade to acquire the full potential of metastasis since the birth of the subclone that evolved into IVC. Our evidence supported that mRCC was monoclonal and distant metastasis occurred late during renal cancer progression. Thus, there was a broad window for early detection of circulating tumor cells and future targeted treatments for patients with mRCCs should rely on the molecular profiles of metastases.


Subject(s)
Brain Neoplasms/genetics , Carcinogenesis/genetics , Carcinoma, Renal Cell/genetics , Neoplasm Metastasis/genetics , Brain Neoplasms/secondary , Carcinoma, Renal Cell/metabolism , Exome/genetics , Gene Expression Profiling , Genetic Heterogeneity , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Neoplastic Cells, Circulating
13.
Nature ; 456(7218): 60-5, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18987735

ABSTRACT

Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.


Subject(s)
Asian People/genetics , Diploidy , Genome, Human/genetics , Genomics , Alleles , Animals , Consensus Sequence , Databases, Genetic , Genetic Predisposition to Disease/genetics , Haplotypes/genetics , Humans , Internet , Pan troglodytes/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Sensitivity and Specificity , Sequence Alignment
14.
Genome Res ; 20(5): 646-54, 2010 May.
Article in English | MEDLINE | ID: mdl-20305017

ABSTRACT

Understanding the dynamics of eukaryotic transcriptome is essential for studying the complexity of transcriptional regulation and its impact on phenotype. However, comprehensive studies of transcriptomes at single base resolution are rare, even for modern organisms, and lacking for rice. Here, we present the first transcriptome atlas for eight organs of cultivated rice. Using high-throughput paired-end RNA-seq, we unambiguously detected transcripts expressing at an extremely low level, as well as a substantial number of novel transcripts, exons, and untranslated regions. An analysis of alternative splicing in the rice transcriptome revealed that alternative cis-splicing occurred in approximately 33% of all rice genes. This is far more than previously reported. In addition, we also identified 234 putative chimeric transcripts that seem to be produced by trans-splicing, indicating that transcript fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell. Taken together, our data provide extensive evidence that transcriptional regulation in rice is vastly more complex than previously believed.


Subject(s)
Base Pairing/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins , Sequence Analysis, RNA/methods , Alternative Splicing , Base Sequence , Chromosome Mapping , Gene Library , Genes, Plant/genetics , Models, Genetic , Molecular Sequence Data , Oryza/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Splicing , Trans-Splicing
15.
Oncoimmunology ; 12(1): 2182058, 2023.
Article in English | MEDLINE | ID: mdl-36875551

ABSTRACT

T cell Receptor (TCR) Fusion Construct (TRuC®) T cells harness all signaling subunits of the TCR to activate T cells and eliminate tumor cells, with minimal release of cytokines. While adoptive cell therapy with chimeric antigen receptor (CAR)-T cells has shown unprecedented clinical efficacy against B-cell malignancies, monotherapy with CAR-T cells has suboptimal clinical efficacy against solid tumors, probably because of the artificial signaling properties of the CAR. TRuC-T cells may address the suboptimal efficacy of existing CAR-T therapies for solid tumors. Here, we report that mesothelin (MSLN)-specific TRuC-T cells (referred to as TC-210 T cells) potently kill MSLN+ tumor cells in vitro and efficiently eradicate MSLN+ mesothelioma, lung, and ovarian cancers in xenograft mouse tumor models. When benchmarked against MSLN-targeted BBζ CAR-T cells (MSLN-BBζ CAR-T cells), TC-210 T cells show an overall comparable level of efficacy; however, TC-210 T cells consistently show faster tumor rejection kinetics that are associated with earlier intratumoral accumulation and earlier signs of activation. Furthermore, in vitro and ex vivo metabolic profiling suggests TC-210 T cells have lower glycolytic activity and higher mitochondrial metabolism than MSLN-BBζ CAR-T cells. These data highlight TC-210 T cells as a promising cell therapy for treating MSLN-expressing cancers. The differentiated profile from CAR-T cells may translate into better efficacy and safety of TRuC-T cells for solid tumors.


Subject(s)
Mesothelioma, Malignant , Ovarian Neoplasms , Humans , Animals , Mice , Female , T-Lymphocytes , Mesothelin , Receptors, Antigen, T-Cell , Disease Models, Animal
16.
Nucleic Acids Res ; 38(15): 5075-87, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20392818

ABSTRACT

Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome.


Subject(s)
Aspergillus oryzae/genetics , Gene Expression Profiling , Genome, Fungal , Transcription, Genetic , Alternative Splicing , Aspergillus oryzae/metabolism , Gene Expression Regulation, Fungal , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Sequence Analysis, RNA , Untranslated Regions
17.
Leukemia ; 36(4): 1078-1087, 2022 04.
Article in English | MEDLINE | ID: mdl-35027656

ABSTRACT

Interrogation of cell-free DNA (cfDNA) represents an emerging approach to non-invasively estimate disease burden in multiple myeloma (MM). Here, we examined low-pass whole genome sequencing (LPWGS) of cfDNA for its predictive value in relapsed/ refractory MM (RRMM). We observed that cfDNA positivity, defined as ≥10% tumor fraction by LPWGS, was associated with significantly shorter progression-free survival (PFS) in an exploratory test cohort of 16 patients who were actively treated on diverse regimens. We prospectively determined the predictive value of cfDNA in 86 samples from 45 RRMM patients treated with elotuzumab, pomalidomide, bortezomib, and dexamethasone in a phase II clinical trial (NCT02718833). PFS in patients with tumor-positive and -negative cfDNA after two cycles of treatment was 1.6 and 17.6 months, respectively (HR 7.6, P < 0.0001). Multivariate hazard modelling confirmed cfDNA as independent risk factor (HR 96.6, P = 6.92e-05). While correlating with serum-free light chains and bone marrow, cfDNA additionally discriminated patients with poor PFS among those with the same response by IMWG criteria. In summary, detectability of MM-derived cfDNA, as a measure of substantial tumor burden with therapy, independently predicts poor PFS and may provide refinement for standard-of-care response parameters to identify patients with poor response to treatment earlier than is currently feasible.


Subject(s)
Cell-Free Nucleic Acids , Multiple Myeloma , Cell-Free Nucleic Acids/genetics , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Treatment Failure
18.
Clin Cancer Res ; 27(23): 6432-6444, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34518309

ABSTRACT

PURPOSE: Although remarkably effective in some patients, precision medicine typically induces only transient responses despite initial absence of resistance-conferring mutations. Using BRAF-mutated myeloma as a model for resistance to precision medicine we investigated if BRAF-mutated cancer cells have the ability to ensure their survival by rapidly adapting to BRAF inhibitor treatment. EXPERIMENTAL DESIGN: Full-length single-cell RNA (scRNA) sequencing (scRNA-seq) was conducted on 3 patients with BRAF-mutated myeloma and 1 healthy donor. We sequenced 1,495 cells before, after 1 week, and at clinical relapse to BRAF/MEK inhibitor treatment. We developed an in vitro model of dabrafenib resistance using genetically homogeneous single-cell clones from two cell lines with established BRAF mutations (U266, DP6). Transcriptional and epigenetic adaptation in resistant cells were defined by RNA-seq and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq). Mitochondrial metabolism was characterized by metabolic flux analysis. RESULTS: Profiling by scRNA-seq revealed rapid cellular state changes in response to BRAF/MEK inhibition in patients with myeloma and cell lines. Transcriptional adaptation preceded detectable outgrowth of genetically discernible drug-resistant clones and was associated with widespread enhancer remodeling. As a dominant vulnerability, dependency on oxidative phosphorylation (OxPhos) was induced. In treated individuals, OxPhos was activated at the time of relapse and showed inverse correlation to MAPK activation. Metabolic flux analysis confirmed OxPhos as a preferential energetic resource of drug-persistent myeloma cells. CONCLUSIONS: This study demonstrates that cancer cells have the ability to rapidly adapt to precision treatments through transcriptional state changes, epigenetic adaptation, and metabolic rewiring, thus facilitating the development of refractory disease while simultaneously exposing novel vulnerabilities.


Subject(s)
Melanoma , Multiple Myeloma , Drug Resistance, Neoplasm , Humans , Melanoma/drug therapy , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Mutation , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf , Single-Cell Analysis
19.
Sci Transl Med ; 8(363): 363ra147, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27807282

ABSTRACT

Multiple myeloma (MM) remains an incurable disease, with a treatment-refractory state eventually developing in all patients. Constant clonal evolution and genetic heterogeneity of MM are a likely explanation for the emergence of drug-resistant disease. Monitoring of MM genomic evolution on therapy by serial bone marrow biopsy is unfortunately impractical because it involves an invasive and painful procedure. We describe how noninvasive and highly sensitive isolation and characterization of circulating tumor cells (CTCs) from peripheral blood at single-cell resolution recapitulate MM in the bone marrow. We demonstrate that CTCs provide the same genetic information as bone marrow MM cells and even reveal mutations with greater sensitivity than bone marrow biopsies in some cases. Single CTC RNA sequencing enables classification of MM and quantitative assessment of genes that are relevant for prognosis. We propose that the genomic characterization of CTCs should be included in clinical trials to follow the emergence of resistant subclones after MM therapy.


Subject(s)
Bone Marrow/pathology , Genetic Heterogeneity , Multiple Myeloma/genetics , Neoplastic Cells, Circulating/pathology , DNA Mutational Analysis , Feasibility Studies , Gene Expression Profiling , Genotype , Humans , Loss of Heterozygosity , Multiple Myeloma/blood , Mutation , Plasma Cells/metabolism , Prognosis , Proof of Concept Study , Sequence Analysis, RNA , Single-Cell Analysis , Transcription, Genetic , Tumor Burden
20.
Nat Genet ; 48(6): 607-16, 2016 06.
Article in English | MEDLINE | ID: mdl-27158780

ABSTRACT

To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor-normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase-Ras-Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Genome, Human , Lung Neoplasms/genetics , Antigens, Neoplasm , DNA Copy Number Variations , Humans , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL