Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biochem Mol Toxicol ; 37(6): e23340, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37041698

ABSTRACT

Postoperative cognitive dysfunction (POCD) is regularly observed in patients postsurgery due to the usage of anesthetics, including Sevoflurane. Research has confirmed the participation of oxidative stress (OS) and inflammation in the pathogenesis of POCD. Recently, the potential therapeutic function of miR-190a-3p against cognitive dysfunction has been reported. However, its role and mechanism in POCD are unclear. Our study will focus on the protective property and mechanism of miR-190a-3p on POCD to seek potential biomarkers and treatment targets for POCD. The animal model of POCD was constructed by the injection of Sevoflurane, followed by the administration of mimic negative control and miR-190a-3p. MiR-190a-3p was found to be downregulated in POCD rats. Declined time to explore the platform, swimming distance, and times that rats crossed the platform were observed in POCD rats, accompanied by increased secretion of proinflammatory cytokines, elevated malondialdehyde levels, repressed superoxide dismutase activity, and decreased levels of reduced glutathione, all of which were dramatically reversed by miR-190a-3p. Furthermore, the downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and activation of toll-like receptor 4/nuclear factor-κB signaling were observed in POCD rats, which were greatly rescued by miR-190a-3p. Lastly, the Nrf2 luciferase activity and Nrf2 levels in HT22 cells were extremely improved by miR-190a-3p. Collectively, miR-190a-3p alleviated Sevoflurane-induced POCD in rats by repressing OS and inflammation.


Subject(s)
Cognitive Dysfunction , MicroRNAs , Postoperative Cognitive Complications , Rats , Animals , Postoperative Cognitive Complications/chemically induced , Sevoflurane/adverse effects , MicroRNAs/genetics , NF-E2-Related Factor 2/genetics , Cognitive Dysfunction/chemically induced , Inflammation/chemically induced , Inflammation/pathology
2.
Bioengineered ; 13(5): 13366-13383, 2022 05.
Article in English | MEDLINE | ID: mdl-36700466

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) represents a coronary artery disease, accompanied by high morbidity and mortality. Sevoflurane post-conditioning (SPC) is importantly reported in myocardial disease. Accordingly, the current study sought to evaluate the role of Sevo in MI/RI. Firstly, MI/RI models were established and subjected to SPC. Subsequently, pathological injury in the myocardium, myocardial infarction areas, H9c2 cell viability, apoptosis, and levels of creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH) were all measured. Ubiquitin-specific peptidase (22USP22), lysine-specific demethylase 3A (KDM3A), and Yes1 associated transcriptional regulator (YAP1) were down-regulated in H9c2 cells using cell transfection to verify their roles. The interaction between USP22 and KDM3A and between KDM3A and YAP1 was further validated. USP 22, KDM3A, and YAP1 were found to be down-regulated in MI/RI and SPC protected MI/RI rats, as evidenced by up-regulated expressions of USP22, KDM3A, and YAP1, reduced pathological injury in the myocardium, myocardial infarction areas, apoptosis, and levels of CK-MB, cTnI, and LDH, and enhanced H9c2 cell viability; while the protective effects of Sevo were counteracted by silencing of USP22, KDM3A, and SPC upregulated USP22, which stabilized KDM3A protein levels via deubiquitination, and KDM3A inhibited histone 3 lysine 9 di-methylation (H3K9me2) levels in the YAP1 promoter to encourage YAP1 transcription, to reduce MI/RI.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Sevoflurane/pharmacology , Lysine/pharmacology , Rats, Sprague-Dawley , Apoptosis , Myocytes, Cardiac/metabolism
3.
Nat Prod Res ; 33(17): 2549-2553, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29614870

ABSTRACT

This study investigated the flavonoid constituents of a traditional Chinese medical plant Ziziphora clinopodioides Lam. by using ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry and screened the active components in regulating autophagy.Normal rat kidney (NRK) cells transfected with green fluorescent protein- microtubule-associated protein 1 light Chain 3(GFP-LC3) were treated with Z. clinopodioides flavonoids and its chemical compositions. After 4 h of treatment, the auto-phagy spot aggregation in NRK cells was photographed and observed by laser scanning confocal microscopy. The following 10 flavonoid components of Z. clinopodioides were identified: baicalein(1), quercetin(2), hyperoside(3), quercetin3-O-ß-d-glucopyranoside(4), apigenin(5), kaempferol(6), chrysin(7), diosimin(8), linarin(9) and rutin(10). Among these flavonoids, chrysin, apigenin and quercetin were identified as the active principles in activating autophagy. This research may provide a reference for further developing and utilizing Z. clinopodioides.


Subject(s)
Autophagy/drug effects , Lamiaceae/chemistry , Plant Extracts/pharmacology , Animals , Apigenin/pharmacology , Cell Line , Chromatography, High Pressure Liquid , Flavonoids/analysis , Flavonoids/isolation & purification , Flavonoids/pharmacology , Kidney/cytology , Kidney/drug effects , Mass Spectrometry , Medicine, Chinese Traditional , Plant Extracts/analysis , Plant Extracts/chemistry , Quercetin/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL