Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.586
Filter
Add more filters

Publication year range
1.
Nature ; 604(7907): 763-770, 2022 04.
Article in English | MEDLINE | ID: mdl-35418678

ABSTRACT

Adhesion G-protein-coupled receptors (aGPCRs) are important for organogenesis, neurodevelopment, reproduction and other processes1-6. Many aGPCRs are activated by a conserved internal (tethered) agonist sequence known as the Stachel sequence7-12. Here, we report the cryogenic electron microscopy (cryo-EM) structures of two aGPCRs in complex with Gs: GPR133 and GPR114. The structures indicate that the Stachel sequences of both receptors assume an α-helical-bulge-ß-sheet structure and insert into a binding site formed by the transmembrane domain (TMD). A hydrophobic interaction motif (HIM) within the Stachel sequence mediates most of the intramolecular interactions with the TMD. Combined with the cryo-EM structures, biochemical characterization of the HIM motif provides insight into the cross-reactivity and selectivity of the Stachel sequences. Two interconnected mechanisms, the sensing of Stachel sequences by the conserved 'toggle switch' W6.53 and the constitution of a hydrogen-bond network formed by Q7.49/Y7.49 and the P6.47/V6.47φφG6.50 motif (φ indicates a hydrophobic residue), are important in Stachel sequence-mediated receptor activation and Gs coupling. Notably, this network stabilizes kink formation in TM helices 6 and 7 (TM6 and TM7, respectively). A common Gs-binding interface is observed between the two aGPCRs, and GPR114 has an extended TM7 that forms unique interactions with Gs. Our structures reveal the detailed mechanisms of aGPCR activation by Stachel sequences and their Gs coupling.


Subject(s)
Peptides , Receptors, G-Protein-Coupled , Binding Sites , Cryoelectron Microscopy , Protein Domains , Protein Structure, Secondary , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
2.
EMBO J ; 42(10): e112408, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37009655

ABSTRACT

The molecular mechanisms underlying estrogen receptor (ER)-positive breast carcinogenesis and endocrine therapy resistance remain incompletely understood. Here, we report that circPVT1, a circular RNA generated from the lncRNA PVT1, is highly expressed in ERα-positive breast cancer cell lines and tumor samples and is functionally important in promoting ERα-positive breast tumorigenesis and endocrine therapy resistance. CircPVT1 acts as a competing endogenous RNA (ceRNA) to sponge miR-181a-2-3p, promoting the expression of ESR1 and downstream ERα-target genes and breast cancer cell growth. Furthermore, circPVT1 directly interacts with MAVS protein to disrupt the RIGI-MAVS complex formation, inhibiting type I interferon (IFN) signaling pathway and anti-tumor immunity. Anti-sense oligonucleotide (ASO)-targeting circPVT1 inhibits ERα-positive breast cancer cell and tumor growth, re-sensitizing tamoxifen-resistant ERα-positive breast cancer cells to tamoxifen treatment. Taken together, our data demonstrated that circPVT1 can work through both ceRNA and protein scaffolding mechanisms to promote cancer. Thus, circPVT1 may serve as a diagnostic biomarker and therapeutic target for ERα-positive breast cancer in the clinic.


Subject(s)
Breast Neoplasms , RNA, Circular , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , RNA, Circular/genetics , RNA, Circular/metabolism
3.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37478163

ABSTRACT

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Subject(s)
Dinoprostone , Signal Transduction , Dinoprostone/metabolism , Signal Transduction/physiology , Receptors, Prostaglandin/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Hormones , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP3 Subtype/metabolism
4.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36592062

ABSTRACT

Recent studies have revealed that long noncoding RNAs (lncRNAs) are closely linked to several human diseases, providing new opportunities for their use in detection and therapy. Many graph propagation and similarity fusion approaches can be used for predicting potential lncRNA-disease associations. However, existing similarity fusion approaches suffer from noise and self-similarity loss in the fusion process. To address these problems, a new prediction approach, termed SSMF-BLNP, based on organically combining selective similarity matrix fusion (SSMF) and bidirectional linear neighborhood label propagation (BLNP), is proposed in this paper to predict lncRNA-disease associations. In SSMF, self-similarity networks of lncRNAs and diseases are obtained by selective preprocessing and nonlinear iterative fusion. The fusion process assigns weights to each initial similarity network and introduces a unit matrix that can reduce noise and compensate for the loss of self-similarity. In BLNP, the initial lncRNA-disease associations are employed in both lncRNA and disease directions as label information for linear neighborhood label propagation. The propagation was then performed on the self-similarity network obtained from SSMF to derive the scoring matrix for predicting the relationships between lncRNAs and diseases. Experimental results showed that SSMF-BLNP performed better than seven other state of-the-art approaches. Furthermore, a case study demonstrated up to 100% and 80% accuracy in 10 lncRNAs associated with hepatocellular carcinoma and 10 lncRNAs associated with renal cell carcinoma, respectively. The source code and datasets used in this paper are available at: https://github.com/RuiBingo/SSMF-BLNP.


Subject(s)
RNA, Long Noncoding , Humans , Algorithms , Computational Biology/methods , RNA, Long Noncoding/genetics , Software , Carcinoma, Hepatocellular/genetics , Carcinoma, Renal Cell/genetics , Liver Neoplasms/genetics , Kidney Neoplasms/genetics
5.
Hepatology ; 79(2): 289-306, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37540187

ABSTRACT

BACKGROUND AND AIMS: Molecular classification is a promising tool for prognosis prediction and optimizing precision therapy for HCC. Here, we aimed to develop a molecular classification of HCC based on the fatty acid degradation (FAD) pathway, fully characterize it, and evaluate its ability in guiding personalized therapy. APPROACH AND RESULTS: We performed RNA sequencing (RNA-seq), PCR-array, lipidomics, metabolomics, and proteomics analysis of 41 patients with HCC, in which 17 patients received anti-programmed cell death-1 (PD-1) therapy. Single-cell RNA sequencing (scRNA-seq) was performed to explore the tumor microenvironment. Nearly, 60 publicly available multiomics data sets were analyzed. The associations between FAD subtypes and response to sorafenib, transarterial chemoembolization (TACE), immune checkpoint inhibitor (ICI) were assessed in patient cohorts, patient-derived xenograft (PDX), and spontaneous mouse model ls. A novel molecular classification named F subtype (F1, F2, and F3) was identified based on the FAD pathway, distinguished by clinical, mutational, epigenetic, metabolic, and immunological characteristics. F1 subtypes exhibited high infiltration with immunosuppressive microenvironment. Subtype-specific therapeutic strategies were identified, in which F1 subtypes with the lowest FAD activities represent responders to compounds YM-155 and Alisertib, sorafenib, anti-PD1, anti-PD-L1, and atezolizumab plus bevacizumab (T + A) treatment, while F3 subtypes with the highest FAD activities are responders to TACE. F2 subtypes, the intermediate status between F1 and F3, are potential responders to T + A combinations. We provide preliminary evidence that the FAD subtypes can be diagnosed based on liquid biopsies. CONCLUSIONS: We identified 3 FAD subtypes with unique clinical and biological characteristics, which could optimize individual cancer patient therapy and help clinical decision-making.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Multiomics , Precision Medicine , Fatty Acids , Tumor Microenvironment
6.
Acc Chem Res ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38301117

ABSTRACT

ConspectusSecond-order nonlinear optical (NLO) materials are currently a hot topic in modern solid-state chemistry and optics because they can produce coherent light by frequency conversion. Noncentrosymmetric (NCS) structure is not only the prerequisite for NLO materials but also a challengeable issue because materials tend to be centrosymmetric (CS) in terms of thermodynamical stability. Among NLO materials, an excellent infrared (IR) candidate should simultaneously meet several strict key conditions including a large NLO coefficient, high laser-induced damage threshold (LIDT), phase-matchable (PM) behavior, and so on. Achieving a balance between the large NLO effect and high LIDT is difficult, as they have contradictory requirements for chemical bonds. Considering the urgent need of the high-power IR laser market and the drawbacks of the available ones, exploring new high-performance IR NLO crystals is necessary while challenging. In this Account, we first briefly introduce the status and advancement of IR NLO crystals and emphasize the criteria of an excellent candidate. Then, we will introduce five simple methods developed by us to discover practical NLO candidates through understanding of the chemical composition-structure-NLO performance relationship. (1) A rarely investigated system with simple chemical compositions as new-type NLO crystals, namely, adducts containing S8 molecules, are developed. Combining a chairlike S8 unit with other units through van der Waals forces has successfully obtained several high-performance NLO adducts. (2) The main trend in exploring new NLO crystals is that the chemical composition is more and more diversified and the structure is more and more complex, and expensive and chemically active alkaline and alkaline earth metals are usually introduced as counter cations. In contrast, the research on systems with simple chemical compositions, simple structures, and low costs has been continuously ignored. The binary M2Q3 (M = Ga, In; Q = S, Se) family with rich acentric modifications has been systematically investigated, and they all exhibit strong SHG effects and high LIDTs. (3) We first proposed the concept of inducing CS structures transformed to NCS ones by partial cation substitution to design novel NLO crystals. Considering the huge number of CS structures in the database compared to the number of NCS structures, it is an attractive method to apply CS structures as the parents to obtain potential NLO materials via partial-substitution-induced symmetry breaking. A series of chalcogenides with high NLO performances have been successfully obtained by us in this way. (4) We investigated the first NLO-active rare earth (RE) chalcophosphates and developed this family systematically, and they demonstrate wonderful comprehensive NLO properties. (5) We created a novel mixed-anion system for NLO applications, namely, chalcogenide borates. Usually, mixed-anion compounds can engender a synergistic effect to obtain desired IR NLO properties. Our recent progress on this system suggests that chalcogenide borates are potential candidates for IR NLO applications, although the study is still in its infancy. Finally, we state the current problems of IR NLO materials and give some perspectives for their future development.

7.
Cell Mol Life Sci ; 81(1): 121, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457049

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood. LUESCC was upregulated in ESCC tissues compared with adjacent normal tissues, which was associated with gender, deep invasion, lymph node metastasis, and poor prognosis of ESCC patients. LUESCC was mainly localized in the cytoplasm of ESCC cells. Knockdown of LUESCC inhibited cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth in vivo. Mechanistic investigation indicated that LUESCC functions as a ceRNA by sponging miR-6785-5p to enhance NRSN2 expression, which is critical for the malignant behaviors of ESCC. Furthermore, ASO targeting LUESCC substantially suppressed ESCC both in vitro and in vivo. Collectively, these data demonstrate that LUESCC may exerts its oncogenic role by sponging miR-6785-5p to promote NRSN2 expression in ESCC, providing a potential diagnostic marker and therapeutic target for ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , RNA, Long Noncoding , Humans , Cell Line, Tumor , Disease Progression , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
8.
Proc Natl Acad Sci U S A ; 119(34): e2200753119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969736

ABSTRACT

Jumonji C-domain-containing protein 6 (JMJD6), an iron (Fe2+) and α-ketoglutarate (α-KG)-dependent oxygenase, is expressed at high levels, correlated with poor prognosis, and considered as a therapeutic target in multiple cancer types. However, specific JMJD6 inhibitors that are potent in suppressing tumorigenesis have not been reported so far. We herein report that iJMJD6, a specific small-molecule inhibitor of JMJD6 with favorable physiochemical properties, inhibits the enzymatic activity of JMJD6 protein both in vitro and in cultured cells. iJMJD6 is effective in suppressing cell proliferation, migration, and invasion in multiple types of cancer cells in a JMJD6-dependent manner, while it exhibits minimal toxicity in normal cells. Mechanistically, iJMJD6 represses the expression of oncogenes, including Myc and CCND1, in accordance with JMJD6 function in promoting the transcription of these genes. iJMJD6 exhibits suitable pharmacokinetic properties and suppresses tumor growth in multiple cancer cell line- and patient-derived xenograft models safely. Furthermore, combination therapy with iJMJD6 and BET protein inhibitor (BETi) JQ1 or estrogen receptor antagonist fulvestrant exhibits synergistic effects in suppressing tumor growth. Taken together, we demonstrate that inhibition of JMJD6 enzymatic activity by using iJMJD6 is effective in suppressing oncogene expression and cancer development, providing a therapeutic avenue for treating cancers that are dependent on JMJD6 in the clinic.


Subject(s)
Antineoplastic Agents , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Neoplasms , Antineoplastic Agents/pharmacology , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic , Humans , Neoplasms/drug therapy
9.
BMC Genomics ; 25(1): 572, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844832

ABSTRACT

KNOXs, a type of homeobox genes that encode atypical homeobox proteins, play an essential role in the regulation of growth and development, hormonal response, and abiotic stress in plants. However, the KNOX gene family has not been explored in sweet potato. In this study, through sequence alignment, genomic structure analysis, and phylogenetic characterization, 17, 12 and 11 KNOXs in sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30) were identified. The protein physicochemical properties, chromosome localization, phylogenetic relationships, gene structure, protein interaction network, cis-elements of promoters, tissue-specific expression and expression patterns under hormone treatment and abiotic stresses of these 40 KNOX genes were systematically studied. IbKNOX4, -5, and - 6 were highly expressed in the leaves of the high-yield varieties Longshu9 and Xushu18. IbKNOX3 and IbKNOX8 in Class I were upregulated in initial storage roots compared to fibrous roots. IbKNOXs in Class M were specifically expressed in the stem tip and hardly expressed in other tissues. Moreover, IbKNOX2 and - 6, and their homologous genes were induced by PEG/mannitol and NaCl treatments. The results showed that KNOXs were involved in regulating growth and development, hormone crosstalk and abiotic stress responses between sweet potato and its two diploid relatives. This study provides a comparison of these KNOX genes in sweet potato and its two diploid relatives and a theoretical basis for functional studies.


Subject(s)
Diploidy , Gene Expression Regulation, Plant , Ipomoea batatas , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Ipomoea batatas/genetics , Ipomoea batatas/growth & development , Ipomoea batatas/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Genome, Plant , Gene Expression Profiling , Promoter Regions, Genetic
10.
BMC Cancer ; 24(1): 755, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907210

ABSTRACT

BACKGROUND: The role of hemoglobin (HGB) in common malignant tumors remains unclear. METHODS: A retrospective analysis was conducted to identify the correlation between HGB levels and risk of 15 malignant tumors using 50,085 samples from the National Health and Nutrition Examination Survey. Mendelian Randomization analyses (MRAs) were performed based on genome-wide association study data to assess the causal relationship between HGB levels and these malignant tumors using more than 700,000 samples. The robustness of the MRA results was confirmed through various analytical methods. Fifty-six in-house samples were used to investigate the correlation between HGB levels and the prognosis in prostate cancer (PRCA) using the Kaplan-Meier curve. RESULTS: High HGB levels were associated with a higher risk for patients with cervix cancer, melanoma, and non-melanoma skin cancer (OR > 1.000, p < 0.05). It served as a protective factor for colon cancer, esophagus cancer, stomach cancer, bone cancer, lung cancer, renal cancer, and PRCA (OR < 1.000, p < 0.05). Furthermore, MRAs suggested that elevated HGB levels were correlated with a reduced risk of PRCA (OR = 0.869, p < 0.05), with no significant association observed between this marker and the remaining 14 malignant tumors. No pleiotropy or heterogeneity was found in the ultimate results for MRAs (p-values > 0.05), suggesting the robustness of the results. The results derived from the in-house data revealed a relationship between higher HGB values and a more favorable prognosis in PRCA (p < 0.05). CONCLUSION: High circulating HGB levels may play a protective prognostic role for PRCA and serve as a protective factor against the occurrence of PRCA.


Subject(s)
Hemoglobins , Neoplasms , Humans , Retrospective Studies , Male , Female , Hemoglobins/analysis , Neoplasms/epidemiology , Neoplasms/blood , Neoplasms/genetics , Genome-Wide Association Study , Prognosis , Middle Aged , Mendelian Randomization Analysis , Risk Factors , Nutrition Surveys , Adult , Aged , Biomarkers, Tumor/blood
11.
Pediatr Res ; 95(6): 1432-1440, 2024 May.
Article in English | MEDLINE | ID: mdl-38253876

ABSTRACT

BACKGROUND: Irritable bowel syndrome is common in children and exhibits a high placebo response. This study was to explore the placebo response rate and its influencing factors in children with irritable bowel syndrome. METHODS: A systematic search was performed on Pubmed, Embase, MEDLINE, Cochrane Library, CNKI, Wanfang, and CBM from database inception to March 2022. Randomized controlled trials of irritable bowel syndrome in children were included in the study. The primary outcome was the placebo response rate of improvement. RESULTS: Thirteen studies were included, with 445 patients in the placebo group. The rate of improvement and abdominal pain disappearance were 28.2% (95% CI, 16.6-39.9%) and 5% (95% CI, 0-18.4%). The placebo response based on the abdominal pain score was 0.675 (95% CI, 0.203-1.147). The mode of administration (P < 0.01), dosing schedule (P < 0.01), and clinical outcome assessor (P = 0.04) have a significant impact on the magnitude of placebo effect. CONCLUSIONS: The placebo response rate for pediatric irritable bowel syndrome was 28.2%. In clinical trials, reducing dosing frequency, selecting appropriate dosage forms, and using patient-reported outcomes can help mitigate the placebo effect. IMPACT: This is the first meta-analysis to assess the placebo response rates for improvement and disappearance in children with IBS. The finding suggested that the mode of administration, dosing schedule, and clinical outcome assessor could potentially influence the magnitude of the placebo effect in children with IBS. This study would provide a basis for estimating sample size in clinical trial design with a placebo control.


Subject(s)
Abdominal Pain , Irritable Bowel Syndrome , Placebo Effect , Adolescent , Child , Child, Preschool , Female , Humans , Abdominal Pain/drug therapy , Irritable Bowel Syndrome/drug therapy , Placebos , Randomized Controlled Trials as Topic , Treatment Outcome
12.
Cancer Control ; 31: 10732748241235468, 2024.
Article in English | MEDLINE | ID: mdl-38410859

ABSTRACT

OBJECTIVE: This study sought to explore the clinical value of matrix metalloproteinases 12 (MMP12) in multiple cancers, including lung adenocarcinoma (LUAD). METHODS: Using >10,000 samples, this retrospective study demonstrated the first pan-cancer analysis of MMP12. The expression of MMP12 between cancer groups and their control groups was analyzed using Wilcoxon rank-sum tests. The clinical significance of MMP12 expression in multiple cancers was assessed using receiver operating characteristic curves, Kaplan-Meier curves, and univariate Cox analysis. A further LUAD-related analysis based on 4565 multi-center and in-house samples was performed to verify the findings regarding MMP12 in pan-cancer analysis partly. RESULTS: MMP12 mRNA is highly expressed in 13 cancers compared to their controls, and the MMP12 protein level is elevated in some of these cancers (e.g., colon adenocarcinoma) (P < .05). MMP12 expression makes it feasible to distinguish 21 cancer tissues from normal tissues (AUC = 0.86). A high MMP12 expression is a prognosis risk factor in eight cancers, such as adrenocortical carcinoma (hazard ratio >1, P < .05). The elevated MMP12 expression is also a prognosis protective factor in breast-invasive carcinoma and colon adenocarcinoma (hazard ratio <1, P < .05). Some pan-cancer findings regarding MMP12 are verified in LUAD-MMP12 expression is upregulated in LUAD at both the mRNA and protein levels (P < .05), has the potential to distinguish LUAD with considerable accuracy (AUC = .91), and plays a risk prognosis factor for patients with the disease (P < .05). CONCLUSIONS: MMP12 is highly expressed in most cancers and may serve as a novel biomarker for the prediction and prognosis of numerous cancers.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Breast Neoplasms , Colonic Neoplasms , Lung Neoplasms , Humans , Female , Matrix Metalloproteinase 12/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Prognosis , Retrospective Studies , Adenocarcinoma of Lung/genetics , RNA, Messenger/genetics , Lung Neoplasms/genetics
13.
Physiol Plant ; 176(4): e14461, 2024.
Article in English | MEDLINE | ID: mdl-39105262

ABSTRACT

Trichomes are known to be important biofactories that contribute to the production of secondary metabolites, such as terpenoids. C2H2-zinc finger proteins (C2H2-ZFPs) are vital transcription factors of plants' trichome development. However, little is known about the function of Artemisia annua C2H2-ZFPs in trichome development. To explore the roles of this gene family in trichome development, two C2H2-ZFP transcription factors, named AaZFP8L and AaGIS3, were identified; both are hormonally regulated in A. annua. Overexpression of AaZFP8L in tobacco led to a significant increase in the density and length of glandular trichomes, and improved terpenoid content. In contrast, AaGIS3 was found to positively regulate non-glandular trichome initiation and elongation, which reduces terpenoid accumulation. In addition, ABA contents significantly increased in AaZFP8L-overexpressing tobacco lines and AaZFP8L also can directly bind the promoter of the ABA biosynthesis genes. This study lays the foundation for further investigating A. annua C2H2-ZFPs in trichome development and terpenoid accumulation.


Subject(s)
Artemisia annua , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Transcription Factors , Trichomes , Trichomes/metabolism , Trichomes/growth & development , Trichomes/genetics , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Artemisia annua/genetics , Artemisia annua/metabolism , Artemisia annua/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Terpenes/metabolism , Abscisic Acid/metabolism , Promoter Regions, Genetic/genetics
14.
Inorg Chem ; 63(11): 5260-5268, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38447050

ABSTRACT

Zirconium/hafnium fluorides have recently been recognized as potential nonlinear optical (NLO) materials with short ultraviolet (UV) cutoff edges, which is significant in laser science and industry. The synthesis of noncentrosymmetric (NCS) materials based on centrosymmetric (CS) compounds by an isovalent cation substitution-oriented design is an emerging strategy in the NLO territory. Here, two isostructural and novel fluorides, CaBaMF8 (M = Zr (1), Hf (2)), have been synthesized through the combination of alkaline earth metals, zirconium/hafnium, and fluorine elements. They feature zero-dimensional and CS structures composed by an isolated MF8 (M = Zr, Hf) dodecahedron and dissociative Ca2+ and Ba2+ cations, and they display short UV cutoff edges (<200 nm) as well. Two three-dimensional fluorides Li2CaMF8 (M = Zr (3), Hf (4)) are obtained by replacing Ba with alkali metal Li atom, which not only represent phase-matchable second-harmonic-generation activities (0.36, 0.30× KH2PO4 (KDP)) at 1064 nm but also maintain short UV cutoff edges with high reflectance. This work has largely enriched the family of NCS zirconium/hafnium fluorides reaching the short UV region.

15.
Inorg Chem ; 63(24): 10949-10953, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38832652

ABSTRACT

Designing short-wavelength nonlinear-optical (NLO) crystals is of vital importance for laser applications. Here, the combination of alkaline-earth metals, d0 transition metals, and F atom has generated two new and isostructural fluorides, CaBaZr2F12 (CBZF) and CaBaHf2F12 (CBHF), which adopt centrosymmetric space group I4/mmm. Taking CBZF and CBHF as the parents, two new fluorides, K2BaZr2F12 (KBZF) and K2BaHf2F12 (KBHF), with an Imm2 polar structure were obtained via a heterovalent cation substitution strategy. All four compounds feature ZrF8-dodecahedra-built {[Zr2F12]4-}∞ chains and show short ultraviolet cutoff edges (<200 nm). KBZF and KBHF show phase-matchable behavior with moderate second-harmonic-generation responses [0.6 and 0.35 × KH2PO4 (KDP)] under 1064 nm laser radiation. This work enriches fluorides as promising short-wavelength NLO materials.

16.
Inorg Chem ; 63(29): 13197-13201, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38975741

ABSTRACT

Nonlinear optical (NLO) crystals are widely used in various fields. The introduction of lone-pair cations is regarded as an effective strategy to explore NLO crystals. In this work, two novel lead phosphite halides, centrosymmetric Pb6(HPO3)(H2PO3)Cl9 and noncentrosymmetric Pb6(HPO3)2Br8(H2O)·H2O, were obtained via a hydrothermal method. Pb6(HPO3)(H2PO3)Cl9 is the first reported lone-pair metal phosphite with two kinds of phosphite groups (HPO32- and H2PO3-) and Pb6(HPO3)2Br8(H2O)·H2O is the first inorganic NLO phosphite halide with a phase-matchable SHG effect of 1.02 × KDP. In addition, the Pb-centered polyhedral units of PbOCl4, PbOCl6, PbO2Cl5, PbO2Br5, PbOBr6, and PbO3(H2O)Br3 in these two structures have never been reported before. An in-depth study on the structure-property relationship of the two compounds with halogen substitution is also performed.

17.
Inorg Chem ; 63(32): 14821-14826, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39083375

ABSTRACT

Effective design and synthesis of second-order nonlinear optical (NLO) materials hold immense significance in driving modern science and technology advancements. In this study, we synthesized a new acentric mercury nitrate, (C5H12N2S)Hg(NO3)2, by regulating the coordination of the Hg atom through the introduction of a heteroatom. It exhibits an unprecedented [(C5H12N2S)2Hg2(NO3)4]∞ chain composed of Hg2+, NO3-, and organic molecule C5H12N2S. Notably, (C5H12N2S)Hg(NO3)2 demonstrates an unprecedented HgO3S unit and a second harmonic generation (SHG) intensity of 1.3 × KDP at 1064 nm, presenting the second-order nonlinear mercury nitrate constructed by organic molecule. Theoretical calculations suggest that the HgO3S unit and organic molecule C5H12N2S significantly contribute to the SHG effect. This study demonstrates that the incorporation of heteroatoms is an effective strategy for the development of new NLO materials.

18.
Inorg Chem ; 63(1): 73-77, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38153229

ABSTRACT

Chiral organic-inorganic hybrid metal halides are a promising class of nonlinear-optical materials with unique optical properties and flexible crystal structures. However, the structures and properties of chiral hybrid tellurium halides, especially second harmonic generation (SHG), have not been reported. Here, by introducing chiral organic molecule (R/S)-methylbenzylammonium (R/S-MBA), we synthesized a pair of novel zero-dimensional (0D) chiral tellurium-based hybrid halides with noncentrosymmetric space group C2, (R/S-MBA)2TeCl6 (R/S-Cl). Single-crystal X-ray diffraction analysis and solid-state circular dichroism (CD) spectra confirm that R/S-Cl shows obvious enantiomer enrichment. Moreover, the resulting chiral products present an efficient SHG response. Interestingly, through manipulation of halogen atoms, two pairs of achiral tellurium halides, (R/S-MBA)2TeBr6 (R/S-Br) and (R/S-MBA)2TeI6 (R/S-I), were obtained, both of which crystallize in the centrosymmetric space group R3̅. It is noteworthy that R/S-I has a narrow band gap of 1.55 eV, which is smaller than that of most 0D metal halides and comparable to that of three-dimensional lead halide, showing its potential as a highly efficient light absorber.

19.
Inorg Chem ; 63(9): 4017-4021, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38367266

ABSTRACT

As one of the potential candidates of nonlinear-optical (NLO) materials, rare-earth chalcophosphates have demonstrated promising properties. Here, KREP2S6 (RE = Sm, Gd, Tb, Dy) were synthesized using the facile RE2O3-B-S solid-state method. They crystallize with a monoclinic chiral P21 structure, and their layer structures are built by isolated ethane-like P2S6 dimers and RES8 bicapped trigonal prisms built {[RE2S15]24-}∞ layers. By comparing the structures with related ones, the change of the alkali metal or RE3+ ions can cause structural transformation. Their band gaps are tunable between 2.58 and 3.79 eV, and their powder samples exhibit good NLO properties. Theoretical calculations suggest that the NLO properties are mainly contributed by P2S6 units and {[RE2S15]24-}∞ layers synergistically, in which {[RE2S15]24-}∞ layers and P2S6 units dominate the contribution to the band gap and second-harmonic-generation response, respectively. This work enriches the application of rare-earth chalcophosphates as NLO materials.

20.
Inorg Chem ; 63(16): 7118-7122, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38602476

ABSTRACT

Exploring ultraviolet (UV) nonlinear-optical (NLO) materials is significant for the conversion of a high-frequency laser. Two scandium phosphites, Sc(HPO3)(H2PO3)(H2O) and Sc(H2PO3)3, were successfully synthesized. Centric Sc(HPO3)(H2PO3)(H2O) exhibits a short UV cutoff edge (<200 nm) and a unique double-layer structure of [Sc2(HPO3)2(H2PO3)2(H2O)2]∞. The acentric Sc(H2PO3)3 exhibits a three-dimensional [Sc(H2PO3)3]∞ structure with a large band gap of 4.05 eV, and it demonstrates a moderately phase-matchable second-harmonic-generation response [0.60 × KDP (KH2PO4)] at 1064 nm. The crystal structures, optical properties, and theoretical calculations of the two compounds are discussed. This work will promote the exploration of new NLO phosphite materials.

SELECTION OF CITATIONS
SEARCH DETAIL