Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Cell ; 186(15): 3261-3276.e20, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37379839

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates STING-dependent downstream immunity. Here, we discover that cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in innate immunity. Building on recent analysis in Drosophila, we identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screening of 150 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of isomers of the nucleotide signals cGAMP, c-UMP-AMP, and c-di-AMP. Combining structural biology and in vivo analysis in coral and oyster animals, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.


Subject(s)
Immunity, Innate , Nucleotidyltransferases , Humans , Animals , Nucleotidyltransferases/metabolism , Immunity, Innate/genetics , Signal Transduction/genetics , DNA/metabolism , Receptors, Pattern Recognition
2.
Mol Biol Evol ; 38(11): 5144-5155, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34390581

ABSTRACT

Genetic variation and phenotypic plasticity are both important to adaptive evolution. However, how they act together on particular traits remains poorly understood. Here, we integrated phenotypic, genomic, and transcriptomic data from two allopatric but closely related congeneric oyster species, Crassostrea angulata from southern/warm environments and Crassostrea gigas from northern/cold environments, to investigate the roles of genetic divergence and plasticity in thermal adaptation. Reciprocal transplantation experiments showed that both species had higher fitness in their native habitats than in nonnative environments, indicating strong adaptive divergence. The southern species evolved higher transcriptional plasticity, and the plasticity was adaptive, suggesting that increased plasticity is important for thermal adaptation to warm climates. Genome-wide comparisons between the two species revealed that genes under selection tended to respond to environmental changes and showed higher sequence divergence in noncoding regions. All genes under selection and related to energy metabolism exhibited habitat-specific expression with genes involved in ATP production and lipid catabolism highly expressed in warm/southern habitats, and genes involved in ATP consumption and lipid synthesis were highly expressed in cold/northern habitats. The gene for acyl-CoA desaturase, a key enzyme for lipid synthesis, showed strong selective sweep in the upstream noncoding region and lower transcription in the southern species. These results were further supported by the lower free fatty acid (FFA) but higher ATP content in southern species and habitat, pointing to significance of ATP/FFA trade-off. Our findings provide evidence that noncoding variation and transcriptional plasticity play important roles in shaping energy metabolism for thermal adaptation in oysters.


Subject(s)
Crassostrea , Acclimatization/genetics , Adaptation, Physiological/genetics , Animals , Crassostrea/genetics , Energy Metabolism/genetics , Genome
3.
BMC Biol ; 19(1): 15, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33487168

ABSTRACT

BACKGROUND: Inhibitors of apoptosis (IAPs) are critical regulators of programmed cell death that are essential for development, oncogenesis, and immune and stress responses. However, available knowledge regarding IAP is largely biased toward humans and model species, while the distribution, function, and evolutionary novelties of this gene family remain poorly understood in many taxa, including Mollusca, the second most speciose phylum of Metazoa. RESULTS: Here, we present a chromosome-level genome assembly of an economically significant bivalve, the hard clam Mercenaria mercenaria, which reveals an unexpected and dramatic expansion of the IAP gene family to 159 members, the largest IAP gene repertoire observed in any metazoan. Comparative genome analysis reveals that this massive expansion is characteristic of bivalves more generally. Reconstruction of the evolutionary history of molluscan IAP genes indicates that most originated in early metazoans and greatly expanded in Bivalvia through both lineage-specific tandem duplication and retroposition, with 37.1% of hard clam IAPs located on a single chromosome. The expanded IAPs have been subjected to frequent domain shuffling, which has in turn shaped their architectural diversity. Further, we observed that extant IAPs exhibit dynamic and orchestrated expression patterns among tissues and in response to different environmental stressors. CONCLUSIONS: Our results suggest that sophisticated regulation of apoptosis enabled by the massive expansion and diversification of IAPs has been crucial for the evolutionary success of hard clam and other molluscan lineages, allowing them to cope with local environmental stresses. This study broadens our understanding of IAP proteins and expression diversity and provides novel resources for studying molluscan biology and IAP function and evolution.


Subject(s)
Apoptosis/genetics , Genome , Inhibitor of Apoptosis Proteins/genetics , Mercenaria/physiology , Animals , Inhibitor of Apoptosis Proteins/metabolism
4.
Genomics ; 112(6): 4887-4896, 2020 11.
Article in English | MEDLINE | ID: mdl-32890702

ABSTRACT

Severe losses in aquacultured and wild hard clam (Mercenaria mercenaria) stocks have been previously reported in the northeastern United States due to a protistan parasite called QPX (Quahog Parasite Unknown). Previous work demonstrated that clam resistance to QPX is under genetic control. This study identifies single nucleotide polymorphism (SNP) associated with clam survivorship from two geographically segregated populations, both deployed in an enzootic site. The analysis contrasted samples collected before and after undergoing QPX-related mortalities and relied on a robust draft clam genome assembly. ~200 genes displayed significant variant enrichment at each sampling point in both populations, including 18 genes shared between both populations. Markers from both populations were identified in genes related to apoptosis pathways, protein-protein interaction, receptors, and signaling. This research begins to identify genetic markers associated with clam resistance to QPX disease, leading the way for the development of resistant clam stocks through marker-assisted selection.


Subject(s)
Disease Resistance/genetics , Mercenaria , Parasitic Diseases, Animal/genetics , Animals , Genome , Mercenaria/genetics , Mercenaria/parasitology , Parasites , Polymorphism, Single Nucleotide
5.
PLoS Genet ; 13(6): e1006807, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28594821

ABSTRACT

DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes.


Subject(s)
DNA Methylation , Gene Expression Regulation, Developmental , Ostreidae/genetics , Animals , Genome , Ostreidae/growth & development
6.
BMC Genomics ; 20(1): 937, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31805848

ABSTRACT

BACKGROUND: Nicotinic acetylcholine receptors (nAChRs) are among the oldest and most conserved transmembrane receptors involved in signal transduction. Despite the prevalence and significance of cholinergic signaling, the diversity and evolution of nAChRs are not fully understood. RESULT: By comparative genomic analysis, we found massive expansions of nAChR genes in molluscs and some other lophotrochozoans. The expansion is particularly pronounced in stationary bivalve molluscs with simple nervous systems, with the number of nAChR genes ranging from 99 to 217 in five bivalves, compared with 10 to 29 in five ecdysozoans and vertebrates. The expanded molluscan nAChR genes tend to be intronless and in tandem arrays due to retroposition followed by tandem duplication. Phylogenetic analysis revealed diverse nAChR families in the common ancestor of bilaterians, which subsequently experienced lineage-specific expansions or contractions. The expanded molluscan nAChR genes are highly diverse in sequence, domain structure, temporal and spatial expression profiles, implying diversified functions. Some molluscan nAChR genes are expressed in early development before the development of the nervous system, while others are involved in immune and stress responses. CONCLUSION: The massive expansion and diversification of nAChR genes in bivalve molluscs may be a compensation for reduced nervous systems as part of adaptation to stationary life under dynamic environments, while in vertebrates a subset of specialized nAChRs are retained to work with advanced nervous systems. The unprecedented diversity identified in molluscs broadens our view on the evolution and function of nAChRs that are critical to animal physiology and human health.


Subject(s)
Gene Expression Profiling/methods , Mollusca/genetics , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Animals , Evolution, Molecular , Gene Duplication , Gene Expression Regulation , Humans , Introns , Mollusca/classification , Multigene Family , Phylogeny , Protein Domains
7.
Nature ; 490(7418): 49-54, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-22992520

ABSTRACT

The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.


Subject(s)
Adaptation, Physiological/genetics , Animal Shells/growth & development , Crassostrea/genetics , Genome/genetics , Stress, Physiological/physiology , Animal Shells/chemistry , Animals , Apoptosis Regulatory Proteins/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Female , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Genomics , HSP70 Heat-Shock Proteins/genetics , Humans , Larva/genetics , Larva/growth & development , Mass Spectrometry , Molecular Sequence Annotation , Molecular Sequence Data , Polymorphism, Genetic/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA , Stress, Physiological/genetics , Transcriptome/genetics
8.
BMC Genomics ; 18(1): 191, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28219347

ABSTRACT

Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.


Subject(s)
Aquaculture/methods , Breeding/methods , Genomics/methods , Animals , Chromosome Mapping , Genetic Variation , United States
9.
Fish Shellfish Immunol ; 46(1): 107-19, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25989624

ABSTRACT

Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments.


Subject(s)
Adaptation, Biological/immunology , Immunity, Innate , Ostreidae/physiology , Stress, Physiological , Animals , Genome , Ostreidae/genetics , Ostreidae/immunology
10.
Fish Shellfish Immunol ; 46(1): 2-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25982405

ABSTRACT

The eastern oyster, Crassostrea virginica, provides important ecological and economical services, making it the target of restoration projects and supporting a significant fishery/aquaculture industry with landings valued at more than $100 million in 2012 in the United States of America. Due to the impact of infectious diseases on wild, restored, and cultured populations, the eastern oyster has been the focus of studies on host-pathogen interactions and immunity, as well as the target of selective breeding efforts for disease resistant oyster lines. Despite these efforts, relatively little is known about the genetic basis of resistance to diseases or environmental stress, not only in eastern oyster, but also in other molluscan species of commercial interest worldwide. In order to develop tools and resources to assist in the elucidation of the genomic basis of traits of commercial, biological, and ecological interest in oysters, a team of genome and bioinformatics experts, in collaboration with the oyster research community, is sequencing, assembling, and annotating the first reference genome for the eastern oyster and producing an exhaustive transcriptome from a variety of oyster developmental stages and tissues in response to a diverse set of environmentally-relevant stimuli. These transcriptomes and reference genome for the eastern oyster, added to the already available genome and transcriptomes for the Pacific oyster (Crassostrea gigas) and other bivalve species, will be an essential resource for the discovery of candidate genes and markers associated with traits of commercial, biological, and ecologic importance in bivalve molluscs, including those related to host-pathogen interactions and immunity.


Subject(s)
Crassostrea/genetics , Crassostrea/immunology , Genome , Transcriptome , Animals , Aquaculture , Genomics , Sequence Analysis, DNA
11.
Fish Shellfish Immunol ; 46(1): 131-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26004318

ABSTRACT

Viruses are highly abundant in the oceans, and how filter-feeding molluscs without adaptive immunity defend themselves against viruses is not well understood. We studied the response of a mollusc Crassostrea gigas to Ostreid herpesvirus 1 µVar (OsHV-1µVar) infections using transcriptome sequencing. OsHV-1µVar can replicate extremely rapidly after challenge of C. gigas as evidenced by explosive viral transcription and DNA synthesis, which peaked at 24 and 48 h post-inoculation, respectively, accompanied by heavy oyster mortalities. At 120 h post-injection, however, viral gene transcription and DNA load, and oyster mortality, were greatly reduced indicating an end of active infections and effective control of viral replication in surviving oysters. Transcriptome analysis of the host revealed strong and complex responses involving the activation of all major innate immune pathways that are equipped with expanded and often novel receptors and adaptors. Novel Toll-like receptor (TLR) and MyD88-like genes lacking essential domains were highly up-regulated in the oyster, possibly interfering with TLR signal transduction. RIG-1/MDA5 receptors for viral RNA, interferon-regulatory factors, tissue necrosis factors and interleukin-17 were highly activated and likely central to the oyster's antiviral response. Genes related to anti-apoptosis, oxidation, RNA and protein destruction were also highly up-regulated, while genes related to anti-oxidation were down-regulated. The oxidative burst induced by the up-regulation of oxidases and severe down-regulation of anti-oxidant genes may be important for the destruction of viral components, but may also exacerbate oyster mortality. This study provides unprecedented insights into antiviral response in a mollusc. The mobilization and complex regulation of expanded innate immune-gene families highlights the oyster genome's adaptation to a virus-rich marine environment.


Subject(s)
Crassostrea/genetics , Crassostrea/virology , DNA Viruses/physiology , Gene Expression Regulation , Genome, Viral , Animals , Crassostrea/immunology , DNA Viruses/genetics , Gene Expression Profiling , Molecular Sequence Data
12.
J Invertebr Pathol ; 131: 137-54, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26021714

ABSTRACT

Our understanding of disease processes and host-pathogen interactions in model species has benefited greatly from the application of medium and high-throughput genomic, metagenomic, epigenomic, transcriptomic, and proteomic analyses. The rate at which new, low-cost, high-throughput -omic technologies are being developed has also led to an expansion in the number of studies aimed at gaining a better understanding of disease processes in bivalves. This review provides a catalogue of the genetic and -omic tools available for bivalve species and examples of how -omics has contributed to the advancement of marine bivalve disease research, with a special focus in the areas of immunity, bivalve-pathogen interactions, mechanisms of disease resistance and pathogen virulence, and disease diagnosis. The analysis of bivalve genomes and transcriptomes has revealed that many immune and stress-related gene families are expanded in the bivalve taxa examined thus far. In addition, the analysis of proteomes confirms that responses to infection are influenced by epigenetic, post-transcriptional, and post-translational modifications. The few studies performed in bivalves show that epigenetic modifications are non-random, suggesting a role for epigenetics in regulating the interactions between bivalves and their environments. Despite the progress -omic tools have enabled in the field of marine bivalve disease processes, there is much more work to be done. To date, only three bivalve genomes have been sequenced completely, with assembly status at different levels of completion. Transcriptome datasets are relatively easy and inexpensive to generate, but their interpretation will benefit greatly from high quality genome assemblies and improved data analysis pipelines. Finally, metagenomic, epigenomic, proteomic, and metabolomic studies focused on bivalve disease processes are currently limited but their expansion should be facilitated as more transcriptome datasets and complete genome sequences become available for marine bivalve species.


Subject(s)
Bivalvia/genetics , Genomics , Host-Pathogen Interactions/physiology , Proteomics , Animals
13.
BMC Genomics ; 15: 1119, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25514978

ABSTRACT

BACKGROUND: Studies of DNA methylomes in a wide range of eukaryotes have revealed both conserved and divergent characteristics of DNA methylation among phylogenetic groups. However, data on invertebrates particularly molluscs are limited, which hinders our understanding of the evolution of DNA methylation in metazoa. The sequencing of the Pacific oyster Crassostrea gigas genome provides an opportunity for genome-wide profiling of DNA methylation in this model mollusc. RESULTS: Homologous searches against the C. gigas genome identified functional orthologs for key genes involved in DNA methylation: DNMT1, DNMT2, DNMT3, MBD2/3 and UHRF1. Whole-genome bisulfite sequencing (BS-seq) of the oyster's mantle tissues revealed that more than 99% methylation modification was restricted to cytosines in CpG context and methylated CpGs accumulated in the bodies of genes that were moderately expressed. Young repeat elements were another major targets of CpG methylation in oysters. Comparison with other invertebrate methylomes suggested that the 5'-end bias of gene body methylation and the negative correlation between gene body methylation and gene length were the derived features probably limited to the insect lineage. Interestingly, phylostratigraphic analysis showed that CpG methylation preferentially targeted genes originating in the common ancestor of eukaryotes rather than the oldest genes originating in the common ancestor of cellular organisms. CONCLUSIONS: Comparative analysis of the oyster DNA methylomes and that of other animal species revealed that the characteristics of DNA methylation were generally conserved during invertebrate evolution, while some unique features were derived in the insect lineage. The preference of methylation modification on genes originating in the eukaryotic ancestor rather than the oldest genes is unexpected, probably implying that the emergence of methylation regulation in these 'relatively young' genes was critical for the origin and radiation of eukaryotes.


Subject(s)
Crassostrea/genetics , DNA Methylation , Genome , Invertebrates/genetics , Animals , Biological Evolution , CCAAT-Enhancer-Binding Proteins/genetics , CpG Islands , Crassostrea/classification , DNA/chemistry , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA-Binding Proteins/genetics , High-Throughput Nucleotide Sequencing , Invertebrates/classification , Phylogeny , Sequence Analysis, DNA
14.
Mar Biotechnol (NY) ; 26(1): 149-168, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38240954

ABSTRACT

There is clear evidence that the oceans are warming due to anthropogenic climate change, and the northeastern coast of USA contains some of the fastest warming areas. This warming is projected to continue with serious biological and social ramifications for fisheries and aquaculture. One species particularly vulnerable to warming is the Atlantic surfclam (Spisula solidissima). The surfclam is a critically important species, linking marine food webs and supporting a productive, lucrative, and sustainable fishery. The surfclam is also emerging as an attractive candidate for aquaculture diversification, but the warming of shallow coastal farms threatens the expansion of surfclam aquaculture. Little is known about the adaptive potential of surfclams to cope with ocean warming. In this study, the surfclam transcriptome under heat stress was examined. Two groups of surfclams were subjected to heat stress to assess how artificial selection may alter gene expression. One group of clams had been selected for greater heat tolerance (HS) and the other was composed of random control clams (RC). After a 6-h exposure to 16 or 29 °C, gill transcriptome expression profiles of the four temperature/group combinations were determined by RNA sequencing and compared. When surfclams experienced heat stress, they exhibited upregulation of heat shock proteins (HSPs), inhibitors of apoptosis (IAPs), and other stress-response related genes. RC clams differentially expressed 1.7 times more genes than HS clams, yet HS clams had a stronger response of key stress response genes, including HSPs, IAPs, and genes involved with mitigating oxidative stress. The findings imply that the HS clams have a more effective response to heat stress after undergoing the initial selection event due to genetic differences created by the selection, epigenetic memory of the first heat shock, or both. This work provides insights into how surfclams adapt to heat stress and should inform future breeding programs that attempt to breed surfclam for greater heat tolerance, and ultimately bring greater resiliency to shellfish farms.


Subject(s)
Bivalvia , Spisula , Animals , Transcriptome , Heat-Shock Response/genetics , Gene Expression Profiling
15.
Evol Appl ; 17(6): e13710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817396

ABSTRACT

Selective breeding for production traits has yielded relatively rapid successes with high-fecundity aquaculture species. Discovering the genetic changes associated with selection is an important goal for understanding adaptation and can also facilitate better predictions about the likely fitness of selected strains if they escape aquaculture farms. Here, we hypothesize domestication as a genetic change induced by inadvertent selection in culture. Our premise is that standardized culture protocols generate parallel domestication effects across independent strains. Using eastern oyster as a model and a newly developed 600K SNP array, this study tested for parallel domestication effects in multiple independent selection lines compared with their progenitor wild populations. A single contrast was made between pooled selected strains (1-17 generations in culture) and all wild progenitor samples combined. Population structure analysis indicated rank order levels of differentiation as [wild - wild] < [wild - cultured] < [cultured - cultured]. A genome scan for parallel adaptation to the captive environment applied two methodologically distinct outlier tests to the wild versus selected strain contrast and identified a total of 1174 candidate SNPs. Contrasting wild versus selected strains revealed the early evolutionary consequences of domestication in terms of genomic differentiation, standing genetic diversity, effective population size, relatedness, runs of homozygosity profiles, and genome-wide linkage disequilibrium patterns. Random Forest was used to identify 37 outlier SNPs that had the greatest discriminatory power between bulked wild and selected oysters. The outlier SNPs were in genes enriched for cytoskeletal functions, hinting at possible traits under inadvertent selection during larval culture or pediveliger setting at high density. This study documents rapid genomic changes stemming from hatchery-based cultivation of eastern oysters, identifies candidate loci responding to domestication in parallel among independent aquaculture strains, and provides potentially useful genomic resources for monitoring interbreeding between farm and wild oysters.

16.
Eur J Med Chem ; 266: 116155, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266553

ABSTRACT

Novel hybrids of selective COX-2 inhibitors (coxibs) and active derivatives of free radical scavenger edaravone were designed to overcome the risk of cardiovascular events and stroke increased by NSAIDs (nonsteroidal anti-inflammatory drugs) in this study. All the hybrids were assayed for the COX-2 inhibitory and DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging activities in vitro. Finally, we found a series of hybrids with good inhibitory activity and selectivity of COX-2 and excellent free radical scavenging activity in vitro. The most promising compound 6a (WYZ90) exhibited very potent COX-2 inhibitory activity (COX-2, IC50 = 75 nM), weak COX-1 inhibitory activity (COX-1, IC50 = 5734 nM), better free radical scavenging activity (DPPH, IC50 = 19.9 µM) than edaravone, moderate drug-likeness and ADME properties in silico, acceptable pharmacokinetic properties (T1/2 = 4.16 h, 10 mg/kg, o.p.) and oral bioavailability (F% = 36.03 %) in mice. In addition, compound WYZ90 showed similar analgesic activity to the selective COX-2 inhibitor celecoxib in acetic acid-induced mice and better antioxidant activity in Fe2+-induced lipid peroxidation in mouse liver tissue homogenate than edaravone. In conclusion, this study provided a novel class of coxibs containing edaravone moiety as COX-2 selective NSAIDs with free radical scavenging activity and the candidate compound WYZ90 showed not only similar selective COX-2 inhibitory and analgesic activity to celecoxib but also better free radical scavenging and antioxidant activity than edaravone.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Cyclooxygenase 2 Inhibitors , Mice , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Edaravone/pharmacology , Cyclooxygenase 2 , Celecoxib , Antioxidants , Analgesics/pharmacology , Free Radicals/chemistry
17.
J Med Chem ; 67(12): 10350-10373, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38888140

ABSTRACT

Multiple studies have confirmed that acid sphingomyelinase (ASM) activity is associated with depression. The discovery of direct inhibitors against ASM is of great significance for exploring antidepressants and their mechanisms of action. Herein, a series of novel phenylpyrazole analogues were rationally designed and synthesized. Among them, compound 46 exhibited potent inhibitory activity (IC50 = 0.87 µM) and good drug-like properties. In vivo studies demonstrated that compound 46 was involved in multiple antidepressant mechanisms of action, which were associated with a decline of ceramide, including increasing the Bcl-2/Bax ratio and BDNF expression, down-regulating caspase-3 and caspase-9, ameliorating oxidative stress, reducing the levels of proinflammatory cytokines such as TNF-α, IL-1ß, and IL-6, and elevating 5-HT levels in the brains of mice, respectively. These meaningful results reveal for the first time that direct inhibitors exhibit remarkable antidepressant effects in the CUMS-induced mouse model through multiple mechanisms of antidepressant action.


Subject(s)
Antidepressive Agents , Pyrazoles , Sphingomyelin Phosphodiesterase , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/chemical synthesis , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Mice , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism , Structure-Activity Relationship , Male , Depression/drug therapy , Depression/metabolism , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Humans , Brain-Derived Neurotrophic Factor/metabolism , Oxidative Stress/drug effects
18.
Mol Ecol Resour ; 24(1): e13801, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37186213

ABSTRACT

Genome assembly can be challenging for species that are characterized by high amounts of polymorphism, heterozygosity, and large effective population sizes. High levels of heterozygosity can result in genome mis-assemblies and a larger than expected genome size due to the haplotig versions of a single locus being assembled as separate loci. Here, we describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a critical resource for foundational research into molluscan adaptation to a changing environment and for selective breeding for the aquaculture industry. Subsequent resequencing data suggested the presence of haplotigs in the original assembly, and we developed a post hoc method to break up chimeric contigs and mask haplotigs in published heterozygous genomes and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and nuanced effects on estimates of heterozygosity, population structure analysis, and outlier detection. We show that haplotig masking can be a powerful tool for improving genomic inference, and we present an open, reproducible resource for the masking of haplotigs in any published genome.


Subject(s)
Crassostrea , Animals , Crassostrea/genetics , Genomics/methods , Sequence Analysis, DNA , Polymorphism, Genetic , Genome Size
19.
Innovation (Camb) ; 4(4): 100464, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37485076

ABSTRACT

Transcriptional plasticity interacts with natural selection in complex ways and is crucial for the survival of species under rapid climate change. How 3D genome architecture affects transcriptional plasticity and its interaction with genetic adaptation are unclear. We transplanted estuarine oysters to a new environment and found that genes located in active chromatin regions exhibited greater transcriptional plasticity, and changes in these regions were negatively correlated with selective signals. This indicates a trade-off between 3D active regions and selective signals in shaping plastic responses to a new environment. Specifically, a mutation, lincRNA, and changes in the accessibility of a distal enhancer potentially affect its interaction with the ManⅡa gene, which regulates the muscle function and survival of oysters. Our findings reveal that 3D genome architecture compensates for the role of genetic adaptation in environmental response to new environments and provide insights into synergetic genetic and epigenetic interactions critical for fitness-related trait and survival in a model marine species.

20.
Mar Biotechnol (NY) ; 25(1): 174-191, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36622459

ABSTRACT

The eastern oyster Crassostrea virginica is a major aquaculture species for the USA. The sustainable development of eastern oyster aquaculture depends upon the continued improvement of cultured stocks through advanced breeding technologies. The Eastern Oyster Breeding Consortium (EOBC) was formed to advance the genetics and breeding of the eastern oyster. To facilitate efficient genotyping needed for genomic studies and selection, the consortium developed two single-nucleotide polymorphism (SNP) arrays for the eastern oyster: one screening array with 566K SNPs and one breeders' array with 66K SNPs. The 566K screening array was developed based on whole-genome resequencing data from 292 oysters from Atlantic and Gulf of Mexico populations; it contains 566,262 SNPs including 47K from protein-coding genes with a marker conversion rate of 48.34%. The 66K array was developed using best-performing SNPs from the screening array, which contained 65,893 oyster SNPs including 22,984 genic markers with a calling rate of 99.34%, a concordance rate of 99.81%, and a much-improved marker conversion rate of 92.04%. Null alleles attributable to large indels were found in 13.1% of the SNPs, suggesting that copy number variation is pervasive. Both arrays provided easy identification and separation of selected stocks from wild progenitor populations. The arrays contain 31 mitochondrial SNPs that allowed unambiguous identification of Gulf mitochondrial genotypes in some Atlantic populations. The arrays also contain 756 probes from 13 oyster and human pathogens for possible detection. Our results show that marker conversion rate is low in high polymorphism species and that the two-step process of array development can greatly improve array performance. The two arrays will advance genomic research and accelerate genetic improvement of the eastern oyster by delineating genetic architecture of production traits and enabling genomic selection. The arrays also may be used to monitor pedigree and inbreeding, identify selected stocks and their introgression into wild populations, and assess the success of oyster restoration.


Subject(s)
Crassostrea , Animals , Crassostrea/genetics , DNA Copy Number Variations , Genome , Genomics , Genotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL