Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Nature ; 585(7825): 363-367, 2020 09.
Article in English | MEDLINE | ID: mdl-32939071

ABSTRACT

Astronomers have discovered thousands of planets outside the Solar System1, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star2, but more distant planets can survive this phase and remain in orbit around the white dwarf3,4. Some white dwarfs show evidence for rocky material floating in their atmospheres5, in warm debris disks6-9 or orbiting very closely10-12, which has been interpreted as the debris of rocky planets that were scattered inwards and tidally disrupted13. Recently, the discovery of a gaseous debris disk with a composition similar to that of ice giant planets14 demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far, no intact planets have been detected in close orbits around white dwarfs. Here we report the observation of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. We observed and modelled the periodic dimming of the white dwarf caused by the planet candidate passing in front of the star in its orbit. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95 per cent confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red giant phase and shrinks owing to friction. In this case, however, the long orbital period (compared with other white dwarfs with close brown dwarf or stellar companions) and low mass of the planet candidate make common-envelope evolution less likely. Instead, our findings for the WD 1856+534 system indicate that giant planets can be scattered into tight orbits without being tidally disrupted, motivating the search for smaller transiting planets around white dwarfs.

2.
Nature ; 573(7772): 87-90, 2019 09.
Article in English | MEDLINE | ID: mdl-31427764

ABSTRACT

Most known terrestrial planets orbit small stars with radii less than 60 per cent of that of the Sun1,2. Theoretical models predict that these planets are more vulnerable to atmospheric loss than their counterparts orbiting Sun-like stars3-6. To determine whether a thick atmosphere has survived on a small planet, one approach is to search for signatures of atmospheric heat redistribution in its thermal phase curve7-10. Previous phase curve observations of the super-Earth 55 Cancri e (1.9 Earth radii) showed that its peak brightness is offset from the substellar point (latitude and longitude of 0 degrees)-possibly indicative of atmospheric circulation11. Here we report a phase curve measurement for the smaller, cooler exoplanet LHS 3844b, a 1.3-Earth-radii world in an 11-hour orbit around the small nearby star LHS 3844. The observed phase variation is symmetric and has a large amplitude, implying a dayside brightness temperature of 1,040 ± 40 kelvin and a nightside temperature consistent with zero kelvin (at one standard deviation). Thick atmospheres with surface pressures above 10 bar are ruled out by the data (at three standard deviations), and less-massive atmospheres are susceptible to erosion by stellar wind. The data are well fitted by a bare-rock model with a low Bond albedo (lower than 0.2 at two standard deviations). These results support theoretical predictions that hot terrestrial planets orbiting small stars may not retain substantial atmospheres.

3.
J Integr Plant Biol ; 66(4): 787-809, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38477645

ABSTRACT

The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named  RING  ZINC  FINGER PROTEIN  1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.


Subject(s)
Arabidopsis , Plumbaginaceae , Animals , Salt Tolerance/genetics , Plumbaginaceae/genetics , Plumbaginaceae/metabolism , Salt Gland/metabolism , Zinc/metabolism , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Pulm Pharmacol Ther ; 83: 102268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967761

ABSTRACT

Pulmonary fibrosis (PF) is a lethal disease characterized by a progressive decline in lung function. Currently, lung transplantation remains the only available treatment for PF. However, both artemisinin (ART) and hydroxychloroquine (HCQ) possess potential antifibrotic properties. This study aimed to investigate the effects and mechanisms of a compound known as Artemisinin-Hydroxychloroquine (AH) in treating PF, specifically by targeting the TGF-ß1/Smad2/3 pathway. To do this, we utilized an animal model of PF induced by a single tracheal drip of bleomycin (BLM) in Sprague-Dawley (SD) rats. The PF animal models were administered various doses of AH, and the efficacy and safety of AH were evaluated through pulmonary function testing, blood routine tests, serum biochemistry tests, organ index measurements, and pathological examinations. Additionally, Elisa, western blotting, and qPCR techniques were employed to explore the potential molecular mechanisms of AH in treating PF. Our findings reveal that AH effectively and safely alleviate PF by inhibiting BLM-induced specific inflammation, reducing extracellular matrix (ECM) deposition, and interfering with the TGF-ß1/Smad2/3 signaling pathway. Notably, the windfall for this study is that the inhibition of ECM may initiate self-healing in the BLM-induced PF animal model. In conclusion, AH shows promise as a potential therapeutic drug for PF, as it inhibits disease progression through the TGF-ß1/Smad2/3 signaling pathway.


Subject(s)
Artemisinins , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Bleomycin/toxicity , Hydroxychloroquine/adverse effects , Rats, Sprague-Dawley , Signal Transduction , Artemisinins/adverse effects , Lung
5.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069239

ABSTRACT

Ensuring food security for the global population is a ceaseless and critical issue. However, high-salinity and high-alkalinity levels can harm agricultural yields throughout large areas, even in largely agricultural countries, such as China. Various physical and chemical treatments have been employed in different locations to mitigate high salinity and alkalinity but their effects have been minimal. Numerous researchers have recently focused on developing effective and environmentally friendly biological treatments. Endophytes, which are naturally occurring and abundant in plants, retain many of the same characteristics of plants owing to their simultaneous evolution. Therefore, extraction of endophytes from salt-tolerant plants for managing plant growth in saline-alkali soils has become an important research topic. This extraction indicates that the soil environment can be fundamentally improved, and the signaling pathways of plants can be altered to increase their defense capacity, and can even be inherited to ensure lasting efficacy. This study discusses the direct and indirect means by which plant endophytes mitigate the effects of plant salinity stress that have been observed in recent years.


Subject(s)
Endophytes , Salinity , Alkalies , Salt Tolerance , Salt-Tolerant Plants
6.
Angew Chem Int Ed Engl ; 62(5): e202216373, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36465061

ABSTRACT

The transition metal-catalyzed cross-coupling reaction with Fischer metal carbene intermediates bearing an electron-rich alkoxyl or siloxyl group remains a big challenge due to the lack of readily available corresponding carbene precursors. Herein, we report the coupling of alkynes with the Fischer-type copper carbene species bearing a α-siloxyl group, which could be in situ generated from acylsilanes catalytically under photoirradiation and redox-neutral conditions. The side-arm modified bisoxazoline (SaBox) ligands prove to be crucial for this coupling reaction, which provides the corresponding alkynyl alcohol in high yields with remarkable heterocycle tolerance and broad substrate scope.

7.
Angew Chem Int Ed Engl ; 62(25): e202303470, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37069137

ABSTRACT

The development of aryl alkyl sulfides as dichotomous electrophiles for site-selective silylation via C-S bond cleavage has been achieved. Iron-catalyzed selective cleavage of C(aryl)-S bonds can occur in the presence of ß-diketimine ligands, and the cleavage of C(alkyl)-S bonds can be achieved by t-BuONa without the use of transition metals, resulting in the corresponding silylated products in moderate to excellent yields. Mechanistic studies suggest that Fe-Si species may undergo metathesis reactions during the cleavage of C(aryl)-S bonds, while silyl radicals are involved during the cleavage of C(alkyl)-S bonds.


Subject(s)
Sulfides , Transition Elements , Catalysis , Iron , Ligands
8.
Angew Chem Int Ed Engl ; 62(15): e202218886, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36788706

ABSTRACT

The development of environment-friendly, step economic couplings to generate structurally diverse macrocyclic compounds is highly desirable but poses a marked challenge. Inspired by the C-H oxidation mechanism of cytochromes P450, an unprecedented and practical RhIII -catalyzed acylmethylation macrocyclization via C-H/O2 dual activation has been developed by us. The process of macrocyclization is facilitated by a synergic coordination from pyridine and ester group. Interestingly, the reaction mode derives from a three-component coupling which differs from established olefination and alkylation paths. Density functional theory (DFT) calculations and control experiments revealed the mechanism of this unique C-H/O2 dual activation. The newly achieved acylmethylation macrocyclic products and their derivatives showed a potent anti-H1N1 bioactivity, which may provide an opportunity for the discovery of novel anti-H1N1 macrocyclic leading compounds.


Subject(s)
Influenza, Human , Rhodium , Humans , Catalysis , Oxidation-Reduction , Alkylation
9.
Inorg Chem ; 61(26): 10255-10262, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35708242

ABSTRACT

Despite the long history of research in transition metal (TM) complexes, the study of TM-aluminyl complexes is still in its early stage of development. It is expected that the presence of an electropositive Al donor atom would open up new possibilities in TM complex reactivity, and indeed TM-aluminyl has shown an early sign of success in small-molecule activation. On the other hand, the existing reports on TM-aluminyl reactivity are often explained to readers with different understanding on individual cases, and a general picture of TM-aluminyl reactivity is still not available. In this work, we have attempted to provide a systematic picture to explain some early explorations in this field, specifically a series of recently reported heteroallene insertion reactions involving unsupported TM-aluminyl complexes. Through density functional theory calculations of a number of TM-aluminyl complexes, covering both Au and Cu centers, we found that their reactivity against heteroallenes (including CO2 and carbodiimides) is mostly based on the strong nucleophilicity of the TM-Al σ-bond.

10.
Plant Dis ; 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306442

ABSTRACT

Atractylodes lancea Thunb. DC (cangzhu) is a traditional Chinese medicinal plant (Cai et al., 2020). In June 2020, leaf spots were observed in A. lancea plants at the Chongqing Institute of Medicinal Plant Cultivation located in Nanchuan District, Chongqing, China (29°8'26.46″ N, 107°13'23'21″ E). Approximately 75% of the plants displayed leaf spot, partial leaf wilting, and stunted growth, and some plants died. To determine the cause of this disease, five typical leaf spots were cut into small pieces. The pieces were successively surface-disinfected with 0.5% NaClO for 1 min and 75% ethanol for 30 s, washed thrice with sterile water, and placed on potato dextrose agar (PDA) to incubate at 25 ℃. These isolates initially formed abundant white aerial mycelium, then gradually developed a rose pigmentation with a brownish color in the center and grayish rose at the periphery of the colony (Li et al. 2019). Mycelial tips were picked and placed on carnation leaf agar (CLA) and inoculated for 7 days. The macroconidia of the isolates were slender, distinctively curved in the bottom half of the apical cell, and sickle-shaped, with 3-4 septa. They ranged in size from 16.68-26.49 × 1.48-2.34 µm (n=50). The microconidia were fusiform with or without one septum. Their size ranged from 6.19-11.02 × 1.25-1.43 µm (n=50) (Li et al. 2019). The morphological characteristics of the isolates were consistent with those of Fusarium spp. PCR amplification and DNA sequencing of the internal transcribed spacer (ITS) region and ß-tubulin (TUB2) gene were performed using the primers ITS1/ITS4 (White et al. 1990) and Bt-2a/Bt-2b (Robideau et al. 2011), respectively. BLASTn analysis revealed that the ITS sequences of the isolates were 100% identical to those of the F. acuminatum isolates from the Fusarium MLST database (http://isolate.fusariumdb.org/guide.php). Further analysis revealed that the TUB2 sequences were 99.14% identical to those of the F. acuminatum strain S16 isolates (MF662644) from the GeneBank database of the NCBI server. Based on the morphology and sequence analyses, the isolates were identified as F. acuminatum. Pathogenicity tests were conducted on 1.5-year-old A. lancea plants by inoculating spore suspensions under greenhouse conditions (25°C). For this, wound were made on leaves by piercing with sterilized toothpicks. 30 µl of spore suspension containing 2 × 106 conidia/ml was placed on each wound. Wounds on the leaves of control plants were inoculated with 10 µl of sterile distilled water. There were three plants for each treatment. After incubation at 25 °C for 5 days in a greenhouse, the leaves of the treated plants all showed partial wilting, consistent with the field observations. No symptoms were observed in controlled plants. The fungi were again isolated from the symptomatic tissues and were identical to the original isolate. The experiment was repeated twice with similar results. Pathogenicity symptoms were similar to what was first observed in the field and the isolated fungi were verified based on morphological characteristics, thus fulfilling Koch's postulate. To the best of our knowledge, this is the first time that A. lancea leaf spot caused by F. acuminatum has been discovered in China. The leaf spot caused by F. acuminatum on A. lancea has serious yield loss, and proper control measures should be applied.

11.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430364

ABSTRACT

Soil salinization is one of the major factors restricting crop growth and agricultural production worldwide. Recretohalophytes have developed unique epidermal structures in their aboveground tissues, such as salt glands or salt bladders, to secrete excess salt out of the plant body as a protective mechanism from ion damage. Three hypotheses were proposed to explain how salt glands secrete salts: the osmotic hypothesis, a hypothesis similar to animal fluid transport, and vesicle-mediated exocytosis. However, there is no direct evidence to show whether the salt gland-secreted liquid contains landmark proteins or peptides which would elucidate the salt secretion mechanism. In this study, we collected the secreted liquid of salt glands from Limonium bicolor, followed by extraction and identification of its constituent proteins and peptides by SDS-PAGE and mass spectrometry. We detected 214 proteins and 440 polypeptides in the salt gland-secreted droplets of plants grown under control conditions. Unexpectedly, the proportion of energy metabolism-related proteins increased significantly though only 16 proteins and 35 polypeptides in the droplets of salt-treated plants were detected. In addition, vesicle transport proteins such as the Golgi marker enzyme glycosyltransferase were present in the secreted sap of salt glands from both control and salt-treated plants. These results suggest that trans-Golgi network-mediated vesicular transport and energy production contributes to salt secretion in salt glands.


Subject(s)
Proteomics , Salt Gland , Animals , Salt Gland/metabolism , Plant Leaves/metabolism , Sodium Chloride/metabolism , Sodium Chloride, Dietary/metabolism , Energy Metabolism
12.
Chemistry ; 27(43): 11226-11233, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34008250

ABSTRACT

Boroles are attracting broad interest for their myriad and diverse applications, including in synthesis, small molecule activation and functional materials. Their properties and reactivity are closely linked to the cyclic conjugated diene system, which has been shown to participate in cycloaddition reactions, such as the Diels-Alder reaction with alkynes. The reaction steps leading to boranorbornadienes, borepins and tricyclic boracyclohexenes from the thermal reaction of boroles with alkynes are seemingly well understood as judged from the literature. Herein, we question the long-established mechanistic picture of pericyclic rearrangements by demonstrating that seven-membered borepins (i. e., heptaphenylborepin and two derivatives substituted with a thienyl and chloride substituent on boron) exist in a dynamic equilibrium with the corresponding bicyclic boranorbornadienes, the direct Diels-Alder products, but are not isolable products from the reactions. Heating gradually converts the isomeric mixtures into fluorescent tricyclic boracyclohexenes, the most stable isomers in the series. Results from mechanistic DFT calculations reveal that the tricyclic compounds derive from the boranorbornadienes and not the borepins, which were previously believed to be intermediates in purely pericyclic processes.

13.
J Exp Biol ; 224(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34477872

ABSTRACT

Neuropeptides in the SALMFamide family serve as muscle relaxants in echinoderms and may affect locomotion, as the motor behavior in sea cucumbers involves alternating contraction and extension of the body wall, which is under the control of longitudinal muscle. We evaluated the effect of an L-type SALMFamide neuropeptide (LSA) on locomotory performance of Apostichopus japonicus. We also investigated the metabolites of longitudinal muscle tissue using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to assess the potential physiological mechanisms underlying the effect of LSA. The hourly distance, cumulative duration and number of steps moved significantly increased in sea cucumbers in the fourth hour after injection with LSA. Also, the treatment enhanced the mean and maximum velocity by 9.8% and 17.8%, respectively, and increased the average stride by 12.4%. Levels of 27 metabolites in longitudinal muscle changed after LSA administration, and the increased concentration of pantothenic acid, arachidonic acid and lysophosphatidylethanolamine, and the altered phosphatidylethanolamine/phosphatidylcholine ratio are potential physiological mechanisms that could explain the observed effect of LSA on locomotor behavior in A. japonicus.


Subject(s)
Neuropeptides , Sea Cucumbers , Stichopus , Amino Acid Sequence , Animals , Locomotion , Muscles
14.
Inorg Chem ; 60(12): 8998-9007, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34042432

ABSTRACT

Owing to an empty p orbital and a lone pair of electrons on the Si center, silylene exhibits reactivity similar to a transition-metal system capable of activating H2/C-H bonds and small molecules. In this work, with the aid of density functional theory calculations, we systematically investigated the reactions of an acyclic silylene with CO, CO2, and N2O. The detailed mechanisms obtained lead to an in-depth understanding of the silylene single-site ambiphilic reactivity.

15.
J Am Chem Soc ; 142(42): 18118-18127, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32981320

ABSTRACT

The rhodium-catalyzed deoxygenation and borylation of ketones with B2pin2 have been developed, leading to efficient formation of alkenes, vinylboronates, and vinyldiboronates. These reactions feature mild reaction conditions, a broad substrate scope, and excellent functional-group compatibility. Mechanistic studies support that the ketones initially undergo a Rh-catalyzed deoxygenation to give alkenes via boron enolate intermediates, and the subsequent Rh-catalyzed dehydrogenative borylation of alkenes leads to the formation of vinylboronates and diboration products, which is also supported by density functional theory calculations.

16.
J Am Chem Soc ; 142(2): 1065-1076, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31830413

ABSTRACT

The reactions of organic azides with diaryl(dihalo)diboranes(4) were explored, resulting in the observation of a number of surprising reactivity patterns. The reaction of phenyl azide with 1,2-diaryl-1,2-dihalodiboranes(4) resulted in the formation of five-membered rings comprising diboryl-triazenes with retention of the boron-boron bond, while the reaction of the peculiar 1,1-di(9-anthryl)-2,2-difluorodiborane(4) with phenyl azide yielded a six-membered ring bearing a diboryl-triazene, whereby the B-B bond was ruptured by the insertion of an arylnitrene-like reactive intermediate. Both types of heterocycles feature unprecedented connectivity patterns and are very rare examples of boryl triazenes beyond the more common 1,2,3-triazolatoboranes. They are also the product of a unique type of aryl migration from a boron center to the phenyl azide γ-nitrogen center. Lastly, the substitution of 1,2-diaryl-1,2-dihalodiboranes(4) with azide groups, using trimethylsilyl azide as the transfer reagent, yielded boryl-tetrazaboroles and diboryldiazadiboretidines (as side-products), invoking the intermediacy of the first N-boryl-substituted iminoboranes, which are BN isosteres of monoborylated alkynes. The synthetic results are complemented with mechanistic proposals derived from quantum-chemical calculations.

17.
J Org Chem ; 85(21): 14139-14148, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33085482

ABSTRACT

Density functional theory calculations have been performed to study the diverse reactivity of pentaphenylborole toward different epoxides. We systematically investigated the effect of substituents on epoxides for the preference/competition of three experimentally observed pathways, that is, intramolecular proton transfer, direct ring expansion via insertion of one epoxide molecule, and ring expansion via insertion of two epoxide molecules. Our calculations also predicted a high competitivity between the proton transfer and direct ring expansion pathways for the epoxide containing both alkyl and aryl substituents.

18.
J Nat Prod ; 83(1): 3-7, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31721580

ABSTRACT

The first biomimetic total syntheses of three biologically meaningful acylphloroglucinols, watsonianones A and B and corymbone B, with potent antiplasmodial activity, were performed. Their total syntheses were carried out through a diversity-oriented synthetic strategy from congener 2,2,4,4-tetramethyl-6-(3-methylbutylidene)cyclohexane-1,3,5-trione with high step efficiency. The spontaneous enolization/air oxidation of the precursor 2,2,4,4-tetramethyl-6-(3-methylbutylidene)cyclohexane-1,3,5-trione through a singlet O2-induced Diels-Alder reaction pathway to assemble the key biosynthetic peroxide intermediate is also discussed.


Subject(s)
Antimalarials/chemical synthesis , Cyclohexanones/chemical synthesis , Furans/chemical synthesis , Phloroglucinol/analogs & derivatives , Antimalarials/pharmacology , Biomimetics , Cycloaddition Reaction , Cyclohexanones/pharmacology , Furans/pharmacology , Molecular Structure , Oxidation-Reduction , Phloroglucinol/chemical synthesis , Phloroglucinol/pharmacology , Stereoisomerism
19.
J Environ Manage ; 261: 109879, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32148248

ABSTRACT

Heavy metal pollution, because of its high toxicity, non-biodegradability and biological enrichment, has been identified as a global aquatic ecosystems threat in recent decades. Due to the high efficiency, low cost, satisfactory recyclability, easy storage and separation, biosorbents have exhibited a promising prospect for heavy metals treatment in aqueous phase. This article comprehensively summarized different types of biosorbents derived from available low-cost raw materials such as agricultural and forestry wastes. The raw materials obtained are treated with conventional pretreatment or novel methods, which can greatly enhance the adsorption performance of the biosorbents. The suitable immobilization methods can not only further enhance the adsorption performance of the biosorbents, but also facilitate the process of separating the biosorbents from the wastewater. In addition, once biosorbents are put into large-scale use, the final disposal problems cannot be avoided. Therefore, it is necessary to review the currently accepted final disposal methods of biosorbents. Moreover, through the analysis of the adsorption and desorption mechanisms of biosorbents, it is not only beneficial to find the better methods to improve the adsorption performance of the biosorbents, but also better to explain the influencing factors of adsorption effect for biosorbents. Especially, different from many researches focused on biosorbents, this work highlighted the combination of biosorbents with catalytic technologies, which provided new ideas for the follow-up research direction of biosorbents. Finally, the purpose of this paper is to inject new impetus into the future development of biosorbents.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Adsorption , Ecosystem , Wastewater
20.
Anal Chem ; 91(14): 9300-9307, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31241314

ABSTRACT

Using a single test to comprehensively evaluate multiple cardiac biomarkers for early diagnosis and prevention of acute myocardial infarction (AMI) has faced enormous challenges. Here, we have developed paper-based fluorogenic immunodevices for multiplexed detection of three cardiac biomarkers, namely, human heart-type fatty acid binding protein (FABP), cardiac troponin I (cTnI), and myoglobin, simultaneously. The detection is based on a strategy using zinc oxide nanowires (ZnO NWs) to enhance fluorescence signals (∼5-fold compared to that on pure paper). The immunodevices showed high sensitivity and selectivity for FABP, cTnI, and myoglobin with detection limits of 1.36 ng/mL, 1.00 ng/mL, and 2.38 ng/mL, respectively. Additionally, the paper-based immunoassay was rapid (∼5 min to complete the test) and portable (using a homemade chamber with a smartphone and an ultraviolet lamp). The developed devices integrated with ZnO NWs enable quantitative, sensitive, and simultaneous detection of multiple cardiac biomarkers in point-of-care settings, which provides a useful approach for monitoring AMI diseases and may be extended to other medical diagnostics and environmental assessments.


Subject(s)
Fatty Acid Binding Protein 3/blood , Immunoassay/methods , Myoglobin/blood , Nanowires/chemistry , Paper , Troponin I/blood , Biomarkers/blood , Humans , Immunoassay/instrumentation , Limit of Detection , Myocardium/chemistry , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL