Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Vet Pharmacol Ther ; 47(4): 257-265, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598665

ABSTRACT

Tilmicosin, a macrolide antibiotic, has the potential to treat bacterial infections in donkeys. However, the pharmacokinetics of tilmicosin in donkeys have not been reported. The aim of this study was to investigate the pharmacokinetics of tilmicosin in donkey plasma, urine, and feces after a single intragastric administration to determine the suitability of tilmicosin for donkeys. A total of 5 healthy male donkeys with similar body weights were selected. The donkeys were administered a single dose of 10 mg · kg-1 body weight (BW) tilmicosin by gavage. The concentrations of tilmicosin in plasma, urine, and feces were determined. The results showed that after a single intragastric administration of 10 mg · kg-1 body weight, tilmicosin in donkey plasma reached a maximum concentration of 11.23 ± 5.37 mg · L-1 at 0.80 ± 0.10 h, with a half-life of 14.49 ± 7.13 h, a mean residence time of 28.05 ± 3.05 h, a Cl/F of 0.48 ± 0.18 L · kg-1 · h-1, and a Vd/F of 9.28 ± 2.63 Lkg-1. The percentage of tilmicosin excreted through the urine of donkeys is 2.47%, and the percentage excreted through the feces is 66.43%. Our study provides data to inform the use of tilmicosin in donkeys.


Subject(s)
Anti-Bacterial Agents , Equidae , Feces , Tylosin , Animals , Equidae/blood , Tylosin/pharmacokinetics , Tylosin/analogs & derivatives , Tylosin/urine , Tylosin/administration & dosage , Tylosin/blood , Feces/chemistry , Male , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/urine , Anti-Bacterial Agents/blood , Half-Life , Area Under Curve , Administration, Oral
2.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396819

ABSTRACT

In this work, a novel fluorescence sensing strategy was proposed for the detection of gentamicin based on fluorescent carbon quantum dots (CQDs) and gold nanoparticles (AuNPs). Herein, the CQDs were green-synthesized for the first time via a one-step hydrothermal method utilizing brown sugar as the precursor. In the presence of citrate-stabilized AuNPs, the fluorescence of CQDs was quenched efficiently. Gentamicin, on the other hand, had a higher affinity for AuNPs and was able to compete with CQDs for a preferential binding to AuNPs, which ultimately led to the aggregation of AuNPs and freeing of CQDs in solution, causing the fluorescence recovery of CQDs. Based on the above phenomenon, the concentrations of gentamicin could be ascertained by detecting the variations in fluorescence intensity of CQDs. This sensing strategy exhibited excellent selectivity in various antibiotics. At the same time, the method displayed outstanding sensitivity for gentamicin, which was successfully applied to real samples detection.


Subject(s)
Metal Nanoparticles , Quantum Dots , Gold , Carbon , Gentamicins , Limit of Detection , Fluorescent Dyes , Sugars
3.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892157

ABSTRACT

A dual-emission ratio-fluorescent sensing nanohybrid based on Radix Hedysari green-synthesized carbon quantum dots (CDs) and glutathione-functionalized gold nanoclusters (GSH-AuNCs) had been developed for the determination of cefodizime sodium (CDZM). The designed fluorescence nanohybrid had two significant fluorescence emission peaks at 458 nm and 569 nm when excited at 360 nm, which was attributed to the CDs and GSH-AuNCs. With the addition of CDZM, the fluorescence at 458 nm was slightly weakened while the fluorescence at 569 nm was enhanced obviously. Based on the relationship between the I569/I458 fluorescence intensity ratio and the concentration of CDZM, the designed nanohybrid exhibited a good linearity range of 1.0-1000.0 µM and the limit of detection (LOD) was 0.19 µM. The method was finally applied in the detection of CDZM in urine, showing the potential applications in complicated biological samples.


Subject(s)
Glutathione , Gold , Metal Nanoparticles , Quantum Dots , Quantum Dots/chemistry , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Glutathione/urine , Glutathione/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Carbon/chemistry , Cephalosporins/urine , Cephalosporins/chemistry , Fluorescence
4.
Nanotechnology ; 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35045400

ABSTRACT

Hierarchical α-MnO2 nanowires with oxygen vacancies grown on carbon fiber have been synthesized by a simple hydrothermal method with the assistance of Ti4+ ions. Ti4+ ions play an important role in controlling the morphology and crystalline structure of MnO2. The morphology and structure of the as-synthesized MnO2 could be tuned from δ-MnO2 nanosheets to hierarchical α-MnO2 nanowires with the help of Ti4+ ions. Based on its fascinating properties, such as many oxygen vacancies, high specific surface area and the interconnected porous structure, the α-MnO2 electrode delivers a high specific capacitance of 472 F g-1 at a current density of 1 A g-1 and the rate capability of 57.6% (from 1 to 16A g-1). The assembled symmetric supercapacitor based on α-MnO2 electrode exhibits remarkable performance with a high energy density of 44.5 Wh kg-1 at a power density of 2.0 kW kg-1 and good cyclic stability (92.6% after 10000 cycles). This work will provide a reference for exploring and designing high-performance MnO2 materials.

5.
Nanotechnology ; 32(9): 095707, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33207330

ABSTRACT

Density functional theory was used to study the Ag-doped Cu@CuO core-shell structure, electronic properties and catalytic properties. Similar to the undoped Cu@CuO clusters, the Ag doped clusters also retain the core-shell structure. Ag doping increases the charge transfer between surrounding O atoms and Cu atoms and reduces the potential of the core-shell structure, thereby increasing its surface activity. The study of its orbital distribution found that the doping of Ag atoms caused the interaction between the inner Cu core and the outer CuO shell, which changed the electron orbital motion inside the shell. The internal chemical stability of the core-shell material is improved. In addition, Ag atom doping accelerates the decomposition of H2O2 on Cu@CuO structure and increases its adsorption of small molecules, which indicates that Ag atom doping improves the catalytic performance of Cu@CuO structure.

6.
Antibiotics (Basel) ; 13(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667031

ABSTRACT

Enrofloxacin is a broad-spectrum antimicrobial agent, but the study of its pharmacokinetics/pharmacodynamics (PKs/PDs) in donkeys is rarely reported. The present study aimed to investigate the pharmacokinetics of enrofloxacin administered intragastrically, and to study the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in plasma, urine, and feces, and the PK/PD parameters were investigated to provide a rationale for enrofloxacin treatment in donkeys. A total of five healthy donkeys were selected for intragastric administration of 7.5 mg·kg-1 BW of enrofloxacin by gavage, and blood, urine, and fecal samples were collected. The results showed that the elimination half-life of plasma enrofloxacin was 11.40 ± 6.40 h, Tmax was 0.55 ± 0.12 h, Cmax was 2.46 ± 0.14 mg·L-1, AUC0-∞ was 10.30 ± 3.37 mg·L-1·h, and mean residence time (MRT) was 7.88 ± 1.26 h. The Tmax of plasma ciprofloxacin was 0.52 ± 0.08 h, Cmax was 0.14 ± 0.03 mg·L-1, and AUC0-∞ was 0.24 ± 0.16 mg·L-1·h. Urinary Cmax was 38.18 ± 8.56 mg·L-1 for enrofloxacin and 15.94 ± 4.15 mg·L-1 for ciprofloxacin. The total enrofloxacin and ciprofloxacin recovered amount in urine was 7.09 ± 2.55% of the dose for 144 h after dosing. The total enrofloxacin and ciprofloxacin recovered amount in feces was 25.73 ± 10.34% of the dose for 144 h after dosing. PK/PD parameters were also examined in this study, based on published MICs. In conclusion, 7.5 mg/kg BW of enrofloxacin administered intragastrically to donkeys was rapidly absorbed, widely distributed, and slowly eliminated in their bodies, and was predicted to be effective against bacteria with MICs < 0.25 mg·L-1.

7.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38837944

ABSTRACT

Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid ß-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.


Subject(s)
Chickens , Fatty Liver , Gastrointestinal Microbiome , Animals , Chickens/microbiology , Gastrointestinal Microbiome/genetics , Fatty Liver/genetics , Fatty Liver/microbiology , Fatty Liver/veterinary , Fatty Liver/metabolism , Liver/metabolism , Liver/microbiology , Transcriptome , Genome , Metabolome , Poultry Diseases/microbiology , Poultry Diseases/genetics
8.
Materials (Basel) ; 17(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38399136

ABSTRACT

Seeking novel high-performance elastocaloric materials with low critical stress plays a crucial role in advancing the development of elastocaloric refrigeration technology. Here, as a first attempt, the elastocaloric effect of TiZrNbAl shape memory alloy at both room temperature and finite temperatures ranging from 245 K to 405 K, is studied systematically. Composition optimization shows that Ti-19Zr-14Nb-1Al (at.%), possessing excellent room-temperature superelasticity with a critical stress of around 100 MPa and a small stress hysteresis of around 70 MPa and outstanding fracture resistance with a compressive strain of 20% and stress of 1.7 GPa, demonstrates a substantial advantage as an elastocaloric refrigerant. At room temperature, a large adiabatic temperature change (ΔTad) of -6.7 K is detected, which is comparable to the highest value reported in the Ti-based alloys. A high elastocaloric cyclic stability, with almost no degradation of ΔTad after 4000 cycles, is observed. Furthermore, the sizeable elastocaloric effect can be steadily expanded from 255 K to 395 K with a temperature window of as large as 140 K. A maximum ΔTad of -7.9 K appears at 355 K. The present work demonstrates a promising potential of TiZrNbAl as a low critical stress and low hysteresis elastocaloric refrigerant.

9.
Toxins (Basel) ; 15(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36828403

ABSTRACT

Ochratoxin (OTA) is widely present in a wide range of foods and feeds, causing adverse effects on animals and humans. This study aims to explore the toxicokinetics of OTA-contaminated materials on the Dezhou male donkey. Donkeys received a single orally dose of 2500 µg OTA/kg BW, obtained from Aspergillus ochraceus culture material. The concentrations of OTA in plasma collected at 0, 5, 10, 15, 20, 30, 45 min, and at 1, 1.5, 2, 3, 6, 9, 12, 24, 48, 72, 96 and 120 h were detected by HPLC. OTA eliminated in urine and feces were quantified at 6-h intervals up to 24 h and then at 4-h intervals up to 120 h. The results suggested that the maximum concentration of OTA in plasma was observed at 12 h after administration, with a mean value of 10.34 µg/mL. The total excretion in both urine and feces was about 10% of the intake until 120 h.


Subject(s)
Ochratoxins , Male , Humans , Animals , Toxicokinetics , Ochratoxins/metabolism , Food Contamination , Aspergillus ochraceus/metabolism , Feces
10.
Toxins (Basel) ; 15(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37505695

ABSTRACT

Deoxynivalenol (DON) is detected in different types of foods and feeds, inducing toxicity in humans and animals. After entering the organism, DON first appears in the plasma; then, it is rapidly absorbed and distributed in various organs and tends to accumulate in the body to exert its toxic effects. This study was performed to investigate the toxicokinetics of DON on Dezhou male donkeys after a single oral dose of 500 µg/kg·BW (body weight). The plasma of donkeys was collected at 0, 5, 10, 15, 20, 30, 45 min, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 6, 9, 12, 24, 48, 72, 96 and 120 h after administration, and the feces and urine were collected at 0 h and at 6 h intervals up to 24 h, followed by 4 h intervals up to 120 h. The concentrations of DON in plasma, urine and feces were determined by HPLC. The peak concentration of DON in plasma was 174.30 µg/L, which occurred at 1.07 h after oral gavage. The recovery of unchanged DON in urine and feces amounted to 19.98% and 6.74%, respectively. Overall, DON was rapidly absorbed and slowly eliminated in donkeys within 120 h following a single oral dose, which can lead to DON accumulation in the body if ingested for a long time.


Subject(s)
Mycotoxins , Trichothecenes , Humans , Animals , Male , Toxicokinetics , Trichothecenes/metabolism , Chromatography, High Pressure Liquid , Administration, Oral , Mycotoxins/metabolism
11.
Front Vet Sci ; 10: 1314029, 2023.
Article in English | MEDLINE | ID: mdl-38239747

ABSTRACT

Florfenicol (FF) is a commonly used antibacterial agent in animals. We investigated the pharmacokinetics of FF and its metabolite florfenicol amine (FFA) in donkeys. Donkeys were administered FF (30 mg/kg bodyweight, p.o.). Pharmacokinetic parameters were calculated using a non-compartmental model. The FF (FFA) pharmacokinetics parameters were characterized by along elimination half-life (t1/2 kz) of 5.92 h (15.95 h), plasma peak concentration (Cmax) of 0.13 µg/mL (0.08 µg/mL), and the time taken to reach Cmax (Tmax) of 0.68 h (0.72 h). The area under plasma concentration-time curve and mean residence time of FF (FFA) in plasma were 1.31 µg·mL-1·h (0.47 µg·mL-1·h) and 10.37 h (18.40 h), respectively. The t1/2 kz of FF and FFA in urine was 21.93 and 40.26 h, and the maximum excretion rate was 10.56 and 4.03 µg/h reached at 25.60 and 32.20 h, respectively. The respective values in feces were 0.02 and 0.01 µg·h-1 reached at 33.40 h. The amount of FF and FFA recovered in feces was 0.52 and 0.22 µg, respectively. In conclusion, FF (FFA) is rapidly absorbed and slowly eliminated after a single oral administration to donkeys. Compared to FF, FFA was more slowly eliminated. FF (FFA) is mostly excreted through urine.

12.
Front Nutr ; 9: 810462, 2022.
Article in English | MEDLINE | ID: mdl-35223952

ABSTRACT

The effects of Masson pine (Pinus massoniana Lamb.) needle extract (PNE) on gastrointestinal disorders and oxidative stress have been widely investigated using experimental models; however, the functions and mechanisms of these effects in chicken models remain unknown. We investigated the effects of Masson PNE supplementation on performance, egg quality, serum parameters, and the gut microbiome in laying hens. A total of 60 healthy 50-week-old Peking Pink laying hens with similar body conditions and egg production were randomly divided into the control (CON) (0 mg/kg PNE), PNE100 (100 mg/kg PNE), PNE200 (200 mg/kg PNE), and PNE400 (400 mg/kg PNE) groups, with fifteen replicates per treatment and one hen per replicate. Compared with the CON group, egg mass, feed conversion ratios, and yolk weight were significantly increased (p < 0.01) in the PNE100 group. Dietary supplementation of 100 mg/kg PNE increased the serum total protein, albumin, and glucose concentrations (p < 0.01) and decreased the alanine aminotransferase activity (p < 0.05) compared with those of the CONs. Hens in the PNE100 group had reduced serum malondialdehyde levels (p < 0.05) and increased catalase, superoxide dismutase, and glutathione peroxidase activities (p < 0.01) compared with those of the CON group. Serum proinflammatory cytokine concentrations of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α were lower (p < 0.01) and the IL-10 level was higher (p < 0.01) in the PNE100 group than in the CON group. Serum immunoglobulin (Ig)A, IgG, and IgM concentrations were increased in the PNE100 group (p < 0.01). The relative abundance of Bacteroidetes was increased, while the relative abundances of Firmicutes and Proteobacteria were decreased in the PNE100 group. The relative abundances of Vibrio, Shewanella, and Lactobacillus were decreased, while the relative abundances of unclassified_o_Bacteroidales, Rikenellaceae_RC9_gut_group, unclassified_f_Rikenellaceae, and Butyricicoccaceae were increased in the PNE100 group compared with those of the CON group. PNE supplementation at 100 mg/kg improved the diversity and structure of the gut microbial composition, production performance, egg quality, and serum parameters of laying hens. The laying hens in this study had good production performance when supplemented with 100 mg/kg PNE.

SELECTION OF CITATIONS
SEARCH DETAIL