Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614257

ABSTRACT

Osteoarthritis (OA) is a degenerative disease of articular cartilage that is mainly characterized by chronic and mild inflammation of the joints. Recently, many studies have reported the crucial roles of long noncoding RNAs (lncRNAs) in OA as gene transcriptional regulatory factors, diagnostic biomarkers, or therapeutic targets. However, the exact mechanisms of lncRNAs in the regulation of OA progression remain unclear. In the present study, the lncRNA WDR11 divergent transcript (lncRNA WDR11-AS1) was shown to be downregulated in osteoarthritic cartilage tissues from patients, and to promote extracellular matrix (ECM) synthesis in osteoarthritic chondrocytes with knockdown and overexpression experiments. This function of lncRNA WDR11-AS1 was linked to its ability to interact with the polyadenylate-binding protein cytoplasmic 1 (PABPC1), which was screened by RNA pulldown and mass spectrometry analyses. PABPC1 was discovered to bind ECM-related mRNAs such as SOX9, and the inhibition of PABPC1 improved the mRNA stability of SOX9 to mitigate OA progression. Our results suggest that lncRNA WDR11-AS1 has a promising inhibitory effect on inflammation-induced ECM degradation in OA by directly binding PABPC1, thereby establishing lncRNA WDR11-AS1 and PABPC1 as potential therapeutic targets in the treatment of OA.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Osteoarthritis/genetics , Osteoarthritis/metabolism , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Cartilage, Articular/metabolism , Inflammation/metabolism , RNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Proto-Oncogene Proteins/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism
2.
Eur J Immunol ; 51(8): 2062-2073, 2021 08.
Article in English | MEDLINE | ID: mdl-33864383

ABSTRACT

MicroRNA-147 (miR-147) had been previously found induced in synoviocytes by inflammatory stimuli derived from T cells in experimental arthritis. This study was designed to verify whether loss of its function might alleviate inflammatory events in joints of experimental and rheumatoid arthritis (RA). Dark Agouti (DA) rats were injected intradermally with pristane to induce arthritis, and rno-miR-147 antagomir was locally administrated into individual ankle compared with negative control or rno-miR-155-5p antagomir (potential positive control). Arthritis onset, macroscopic severity, and pathological changes were monitored. While in vitro, gain or loss function of hsa-miR-147b-3p/hsa-miR-155-5p and ZNF148 was achieved in human synovial fibroblast cell line SW982 and RA synovial fibroblasts (RASF). The expression of miRNAs and mRNAs was detected by using RT-quantitative PCR, and protein expression was detected by using Western blotting. Anti-miR-147 therapy could alleviate the severity, especially for the synovitis and joint destruction in experimental arthritis. Gain of hsa-miR-147b-3p/hsa-miR-155-5p function in TNF-α stimulated SW982 and RASF cells could upregulate, in contrast, loss of hsa-miR-147b-3p/hsa-miR-155-5p function could downregulate the gene expression of TNF-α, IL-6, MMP3, and MMP13. Hence, such alteration could participate in synovial inflammation and joint destruction. RNAi of ZNF148, a miR-147's target, increased gene expression of TNF-α, IL-6, MMP3, and MMP13 in SW982 and RASF cells. Also, mRNA sequencing data showed that hsa-miR-147b-3p mimic and ZNF148 siRNA commonly regulated the gene expression of CCL3 and DEPTOR as well as some arthritis and inflammation-related pathways. Taken together, miR-147b-3p contributes to synovial inflammation through repressing ZNF148 in RA and experimental arthritis.


Subject(s)
Arthritis, Rheumatoid/immunology , DNA-Binding Proteins/immunology , Gene Expression Regulation/immunology , MicroRNAs/immunology , Synovial Membrane/pathology , Transcription Factors/immunology , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , DNA-Binding Proteins/metabolism , Female , Humans , Inflammation , Male , MicroRNAs/metabolism , Middle Aged , Rats , Transcription Factors/metabolism
3.
J Bone Miner Metab ; 40(6): 914-926, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36156740

ABSTRACT

INTRODUCTION: Selenium (Se) as well as selenoproteins are vital for osteochondral system development. Se deficiency (SeD) has a definite impact on the expression and activity of histone deacetylases (HDACs). Abnormal expression of some HDACs affects cartilage development. This current study aims to explore the relationship between differentially expressed HDACs and cartilage development, especially extracellular matrix (ECM) homeostasis maintenance, under SeD conditions. MATERIALS AND METHODS: Dark Agouti rats and C28/I2 cell line under SeD states were used to detect the differently expressed HDAC by RT-qPCR, western blotting and IHC staining. Meanwhile, the biological roles of the above HDAC in cartilage development and homeostasis maintenance were confirmed by siRNA transfection, western blotting, RNA sequence and inhibitor treatment experiments. RESULTS: HDAC2 exhibited lower expression at protein level in both animals and chondrocytes during SeD condition. The results of cell-level experiments indicated that forkhead box O3A (FOXO3A), which was required to maintain metabolic homeostasis of cartilage matrix, was reduced by HDAC2 knockdown. Meanwhile, induced HDAC2 was positively associated with FOXO3A in rat SeD model. Meanwhile, knockdown of HDAC2 and FOXO3A led to an increase of intracellular ROS level, which activated NF-κB pathway. Se supplementary significantly inhibited the activation of NF-κB pathway with IL-1ß treatment. CONCLUSION: Our results suggested that low expression of HDAC2 under SeD condition increased ROS content by decreasing FOXO3A in chondrocytes, which led to the activation of NF-κB pathway and ECM homeostasis imbalance.


Subject(s)
Forkhead Box Protein O3 , Histone Deacetylase 2 , Selenium , Animals , Rats , Cartilage , Extracellular Matrix , Histone Deacetylase 2/genetics , NF-kappa B , Reactive Oxygen Species , Selenium/pharmacology , Forkhead Box Protein O3/genetics
4.
Bioorg Med Chem ; 66: 116803, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35561631

ABSTRACT

MicroRNA-21 is a carcinogenic microRNA, whose overexpression arises in a variety of tumor tissues. Hence, microRNA-21 a prospective target for cancer treatment, and regulation of microRNA-21 by small molecule inhibitors is deemed as a promising approach for tumor therapy. In this work, to discover potent microRNA-21 inhibitor, series of 4-(N-norfloxacin-acyl)aminobenzamides were designed and synthesized, and their inhibitory effects were appraised by utilizing dual luciferase reporter assays. The results indicated that compound A7 was the most efficient microRNA-21 small molecule inhibitor. What's more, A7 suppressed the migration of Hela cells and the colony formation of Hela and HCT-116 cells as well as promoted apoptosis of Hela cells. In the mechanism study, results of RT-qPCR certified that A7 could reduce the level of mature microRNA-21 via disrupting its expression at the transcriptional level of its primary form "pri-miR-21", which was distinct from most previous inhibitors directly binding with pre-miR-21. Noticeably, Western blotting and RT-qPCR uncovered A7 could upregulate the expression PTEN, EGR1 and SLIT2, which are the downstream functional targets of microRNA-21. These findings demonstrated that A7 was a promising microRNA-21 small molecule inhibitor and 4-(N-norfloxacin-acyl) aminobenzamide can serve as a new scaffold for discovery of potent microRNA-21 inhibitor.


Subject(s)
Antineoplastic Agents , Benzamides , MicroRNAs , Norfloxacin , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Cell Proliferation , HCT116 Cells , HeLa Cells , Humans , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Norfloxacin/pharmacology
5.
J Immunol ; 205(1): 181-192, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32503893

ABSTRACT

Recent studies indicate that glucose metabolism is altered in rheumatoid arthritis. We hypothesize that Pkm2, as a key regulatory enzyme of glycolysis pathway, triggers the activation of macrophages (Mφ), which results in proinflammatory cytokine production during the arthritis progress. In this study, Pkm2 was found to be overexpressed in ED1-positive Mφ in spleens and synovial tissues from arthritic rats via immunofluorescence, Western blotting, and quantitative RT-PCR. To reveal the role of Pkm2, Dark Agouti rats were treated with either Pkm2 enzyme inhibitor shikonin or the RNA interference plasmids of Pkm2 and negative control plasmids, respectively, via i.p. injection. Pkm2 intervention could alleviate the severity of pristane-induced arthritis in aspects of the macroscopic arthritis score, perimeter changes of midpaw, and the synovitis and destruction of the bone and cartilage as well as reduce the ED1 and p-Stat1-positive cell population in rat synovial tissues. Silencing Pkm2 by RNA interference in classical activated rat and mouse Mφ resulted in less Tnf-α, Il-1ß production via Stat1 signaling. Collectively, Pkm2 is highly expressed in ED1-positive Mφ of spleens and synovial tissues from arthritic rats and promotes Mφ activation via Stat1 signaling. Pkm2 might be a promising selective metabolic target molecule for rheumatoid arthritis treatment.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Macrophages/immunology , Pyruvate Kinase/metabolism , STAT1 Transcription Factor/metabolism , Animals , Arthritis, Experimental/diagnosis , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/pathology , Gene Knockdown Techniques , Humans , Macrophages/metabolism , Mice , Naphthoquinones/administration & dosage , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/genetics , RAW 264.7 Cells , RNA, Small Interfering/metabolism , Rats , Severity of Illness Index , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Synovial Membrane/immunology , Synovial Membrane/pathology
6.
Clin Immunol ; 220: 108579, 2020 11.
Article in English | MEDLINE | ID: mdl-32866644

ABSTRACT

Endoplasmic reticulum (ER) stress associated proteins contribute to the pathogenesis of rheumatoid arthritis (RA) through affecting synoviocyte proliferation and proinflammatory cytokine production. The role of DERL3, an ER-associated degradation component, in joint inflammation of RA was explored. Synovial tissues from RA and osteoarthritis (OA) patients were collected, and in RA synovial tissue, DERL3 showed up-regulation and significantly positive correlation with the expression of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and matrix metalloproteinase (MMP)-1. Immunofluorescence result suggested DERL3 was located in fibroblast-like synoviocytes (FLS). Among different inflammatory stimuli, DERL3 could be up-regulated by TNF-α stimulation in FLS. Under TNF-α stimulation, knocking down DERL3, the expression of IL-6, IL-8, MMP-1, MMP-13 was reduced and the activation of nuclear factor kappa B (NF-κB) signaling pathway was inhibited. In pristane-induced arthritis (PIA) rat model, Derl3 was up-regulated in synovial tissue and disease was attenuated after intraarticular injection of siDerl3. Overall, we conclude that TNF-α inducing DERL3 expression promotes the inflammation of FLS through activation of NF-κB signaling pathway, suggesting DERL3 plays important roles in the pathogenesis of RA and is a promising therapeutic target.


Subject(s)
Arthritis, Rheumatoid/immunology , Membrane Proteins/immunology , Synoviocytes/immunology , Aged , Animals , Arthritis, Experimental/immunology , Cells, Cultured , Cytokines/immunology , Female , Humans , Male , Matrix Metalloproteinase 1/immunology , Matrix Metalloproteinase 13/immunology , Mice , Middle Aged , NF-kappa B/immunology , Osteoarthritis/immunology , Rats , Signal Transduction
7.
BMC Med Genet ; 20(1): 96, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31151434

ABSTRACT

BACKGROUND: The highly conservative miR-15/107 family (also named as miR-15/107 gene group) including ten miRNA members is currently recognized strongly implicated in multiple human disorders. Some studies focus on the entire family rather than individual miRNA for a bigger picture, while there is also certain signature dysregulation for some of the individual miRNA implicated even in the same disorder. METHODS: Faced with the exponential growth of experimental evidence, our study tries to analyze their function and target interactions using various bioinformatics tools. RESULTS: Firstly, the evolutionary conservative "AGCAGC" sequence and possible clustered transcriptional pattern were described. Secondly, both the experimentally validated and bioinformatically predicted miRNA-target gene relationship of the entire family was analyzed to understand the mechanism of underlying collective effects for target regulation from the miR-15/107 family. Moreover, pathway analysis among miR-15/107 family was performed and displayed in detail, while its impact on cell proliferation is experimentally validated. Eventually, the dysregulation of miR-15/107 in diseases was discussed. CONCLUSIONS: In summary, our study proposes that the collective functions and implication of miR-15/107 family in various human diseases are achieved relying on the massive overlapping target genes. While the minor differences within target gene interaction among family members could also explain the signature behavior for some of the individual miRNA in aspects such as its disease-specific dysregulation and various participation in pathways.


Subject(s)
Epistasis, Genetic , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks , MicroRNAs/genetics , Base Sequence , Cell Line, Tumor , Cell Proliferation/genetics , Cluster Analysis , Computational Biology/methods , Genetic Predisposition to Disease/genetics , Humans , Multigene Family , Signal Transduction/genetics
8.
Biotechnol Appl Biochem ; 66(5): 755-762, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31021480

ABSTRACT

The therapeutic potential of microRNA-21 (miR-21) small-molecule inhibitors has been of particular interest to medicinal chemists. Moreover, the development of more facile screening methods is lacking. In the present study, two potential screening strategies for miR-21 small-molecule inhibitor including the stem-loop reverse transcription-quantitative PCR and dual luciferase reporter assay system were demonstrated and discussed in detail. A pmirGLO-miR21cswt plasmid and its two different mutants were constructed for dual luciferase reporter assay system. In addition, the sensitivity and specificity of these two methods were validated. Our results demonstrated that both strategies are decent choices for the screening of small-molecule inhibitors for miR-21 and possibly other miRNAs. Eventually, we applied our optimized strategy to discover and characterize several promising compounds such as azobenzene derivate A, enoxacin, and norfloxacin for their potential impact on intracellular miR-21 concentration.


Subject(s)
Genes, Reporter/drug effects , Luciferases, Firefly/antagonists & inhibitors , MicroRNAs/pharmacology , Real-Time Polymerase Chain Reaction , Small Molecule Libraries/pharmacology , Drug Evaluation, Preclinical , Genes, Reporter/genetics , HeLa Cells , High-Throughput Screening Assays , Humans , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Tumor Cells, Cultured
9.
Mediators Inflamm ; 2019: 6768504, 2019.
Article in English | MEDLINE | ID: mdl-31275058

ABSTRACT

Dysregulation of multiple microRNAs widely takes place during rheumatoid arthritis (RA) and experimental arthritides. This study is performed to explore the possible mechanism underlying DICER1 deficiency-mediated inflammation in human synoviocytes SW982. Firstly, RNAi of DICER1 led to increased COX2, MMP3, and MMP13 protein production, while DICER1 overexpression could reduce MMP13 expression. Secondly, the increase of IL-8 and decrease of TGF-ß1 and TIMP1 were determined in the supernatant derived from DICER1 siRNA-treated cells, while DICER1 overexpression was found capable to reverse this effect. Ingenuity pathway analysis (IPA) software predicted that the Dicer1 deficiency-induced dysregulated cytokines in synoviocytes could possibly lead to the inflammatory disorders in the synovial tissue. Moreover, DICER1 deficiency could also reduce apoptosis, while DICER1 overexpression was found to decrease the proliferation and enhance apoptosis. In addition, DICER1 deficiency could lower the expression of multiple RA-related miRNAs such as miR-155. Meanwhile, DICER1 overexpression could rescue their low expression levels. And then, gain or loss of miR-155 function could regulate the protein levels of MMP3 and MMP13. These results indicated that DICER1 might play its role through regulating its downstream RA-related miRNAs. Our data demonstrated that DICER1 deficiency could cause multiple proinflammatory events in human synoviocytes SW982. This mechanism study might provide the possible target molecule to modify the inflammatory destruction and overproliferation in synoviocytes.


Subject(s)
DEAD-box RNA Helicases/metabolism , Inflammation/metabolism , Ribonuclease III/metabolism , Synoviocytes/metabolism , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Cell Line , Cell Proliferation/genetics , Cell Proliferation/physiology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , DEAD-box RNA Helicases/genetics , Humans , Inflammation/genetics , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , RNA Interference , Ribonuclease III/genetics , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transforming Growth Factor beta1/metabolism
10.
Ren Fail ; 41(1): 762-769, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31880214

ABSTRACT

There are seven endoplasmic reticulum (ER)-resident selenoproteins in human body and they can regulate the inflammation, oxidative stress, and ER stress. We established transforming growth factor-ß1 (TGF-ß1) or high glucose (HG) induced human mesangial cells (HMCs) fibronectin expression model in vitro. Next, the expression changes of seven ER-resident selenoproteins were detected under HG conditions and we found selenoprotein S (SELENOS), selenoprotein N (SELENON) were significantly down-regulated but selenoprotein M was significantly up-regulated in transcription level. Furthermore, we found that TGF-ß1 and HG down-regulated the expression of SELENOS and SELENON in a time- and dose-dependent manner, respectively. Finally, SELENOS was knocked down by siRNA and we found that knocking down SELENOS decreased TGF-ß1 induced fibronectin expression. Our research indicates the potential value of ER-resident selenoproteins on renal fibrosis.


Subject(s)
Endoplasmic Reticulum/metabolism , Fibronectins/metabolism , Membrane Proteins/metabolism , Mesangial Cells/metabolism , Muscle Proteins/metabolism , Selenoproteins/metabolism , Cells, Cultured , Glucose , Humans , Transforming Growth Factor beta1
11.
J Cell Mol Med ; 22(12): 5888-5898, 2018 12.
Article in English | MEDLINE | ID: mdl-30247797

ABSTRACT

Selenium (Se) deficiency brings about defects in the biosynthesis of several selenoproteins and has been associated with aberrant chondrogenesis. Selenocysteine (Sec) Insertion Sequence (SECIS) and SECIS binding protein 2 (SBP2) interaction is a very critical node for the metabolic balance between Se and selenoproteins. The Gpx1, Gpx4 and SelS have different binding affinities with SBP2 in cells. According to our results, both miR-181a-5p and SBP2 appeared to be selenium-sensitive and regulated the expression of selenoproteins in C28/I2 cells under Se sufficient environment. However, they showed significantly opposite expression trend in Se deficiency rats cartilage and SeD C28/I2 cells. The SBP2 is a direct target gene of miR-181a-5p in C28/I2 cells as determined by reporter gene and off-target experiments. And the miR-181a-5p could regulate SBP2 and the selenoproteins in C28/I2 cells. Depending upon the Se supply levels, C28/I2 cells were divided into three groups, that is normal Se, SeD and SeS, which underwent through a 7-day Se deprivation process, then SBP2 was knocked-down and overexpressed in all the groups. Moreover, the selected selenoproteins were down-regulated in second-generation low Se diet rat cartilage. The selenoproteins expression was decreased by Se deficiency which depended on the Selenium-sensitive miR-181a-5p to participate and regulate SBP2 at post-transcriptional level. It involves a series of antioxidant and ECM (extracellular matrix) genes, to overcome the ROS-related stress for the protection of essential physiological functions and to maintain the balance between anabolism and catabolism of the cartilage.


Subject(s)
Cartilage/metabolism , RNA-Binding Proteins/genetics , Selenium/pharmacology , Selenoproteins/genetics , Animals , Base Sequence , Cartilage/cytology , Cartilage/drug effects , Cell Line , Chondrocytes/drug effects , Chondrocytes/metabolism , Diet , Down-Regulation/drug effects , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , RNA-Binding Proteins/metabolism , Rats , Selenoproteins/metabolism , Signal Transduction/drug effects
12.
J Cell Mol Med ; 22(11): 5753-5758, 2018 11.
Article in English | MEDLINE | ID: mdl-30133133

ABSTRACT

The interplay between anabolic and catabolic factors regulates cartilage matrix homoeostasis. In OA, this balance is disrupted which results in cartilage degradation involving a plethora of inflammatory factors. Here, we identify a novel gene "Scm-like with four MBT domains protein 2" (SFMBT2) negatively regulated in OA cartilage. Articular cartilage from human OA patients undergoing knee arthroplasty surgery exhibited significantly decreased levels of SFMBT2 compared to the normal controls. Down-regulation of SFMBT2 by specific siRNA disturbed the metabolic homoeostasis and led to decreased expression of anabolic genes (SOX9, COL2A1) while increasing the expression of catabolic genes (MMP13 and ADAMTS4), in human chondrocytes. Finally, we revealed that SFMBT2 intervention by siRNA contributed to the catabolic phenotype of human chondrocytes mediated by NF-kB pathway.


Subject(s)
Arthroplasty, Replacement, Knee , Cartilage, Articular/metabolism , Osteoarthritis/genetics , Repressor Proteins/genetics , Adult , Aged , Cartilage, Articular/pathology , Chondrocytes/metabolism , Collagen Type II/genetics , Female , Gene Expression Regulation/genetics , Humans , Male , Middle Aged , NF-kappa B/genetics , NF-kappa B/metabolism , Osteoarthritis/physiopathology , Osteoarthritis/surgery , RNA, Small Interfering/genetics , SOX9 Transcription Factor/genetics
14.
Acta Biochim Biophys Sin (Shanghai) ; 49(2): 110-118, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28039148

ABSTRACT

Glutathione peroxidase 1 (GPx1) is a selenium (Se)-containing protein and is induced in cartilage formation. GPx1 eliminates reactive oxygen species (ROS), which are required for chondrogenic induction. The physiological properties of GPx1 in cartilage and the redox mechanisms involved are not known. The effects of GPx1 on chondrogenic differentiation of ATDC5 cells were examined through short hairpin RNA-mediated gene silencing. The results demonstrated that GPx1 knockdown impaired gene expression of sex determining region Y-box 9, collagen II (Col II), and aggrecan. GPx1 knockdown suppressed the accumulation of cartilage glycosaminoglycans (GAGs) and the proliferation of chondrocyte. GPx1 knockdown also induced cell apoptosis. However, cell sensitivity toward exogenous oxidative stress was not increased after GPx1 knockdown. Unexpectedly, GPx1 knockdown not only induced oxidative stress characterized by the increased production of ROS but also caused reductive stress indicated by an elevation of glutathione (GSH)/oxidized GSH (GSSG) ratio. Furthermore, GPx1 knockdown-mediated reductive and oxidative stress could be antagonized by a thiol-oxidizing agent diamide and a thiol-containing compound N-acetylcysteine (NAC), respectively. Moreover, NAC attenuated GPx1 knockdown-induced cell apoptosis, while diamide prevented GPx1 knockdown-suppressed chondrocyte proliferation. Finally, diamide but not NAC could rescue GPx1 knockdown-mediated impaired chondrogenic differentiation. In summary, GPx1 is essential for chondrogenic induction in ATDC5 cells mainly through modulation of intracellular GSH/GSSG ratio, rather than an antioxidant enzyme to detoxify ROS. In addition, GPx1 knockdown-induced impaired chondrogenesis may participate in the pathogenesis of the endemic osteoarthropathy due to Se deficiency. These observations offer novel insights for the development of therapeutic target during cartilage degeneration.


Subject(s)
Cell Differentiation/genetics , Chondrocytes/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress , RNA Interference , Aggrecans/genetics , Aggrecans/metabolism , Animals , Apoptosis/genetics , Blotting, Western , Cell Line, Tumor , Cell Proliferation/genetics , Chondrogenesis/genetics , Collagen Type II/genetics , Collagen Type II/metabolism , Gene Expression , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Peroxidase/metabolism , Mice , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Glutathione Peroxidase GPX1
15.
Bio Protoc ; 13(18): e4823, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37753465

ABSTRACT

The transfection of microRNA (miRNA) mimics and inhibitors can lead to the gain and loss of intracellular miRNA function, helping us better understand the role of miRNA during gene expression regulation under specific physical conditions. Our previous research has confirmed the efficiency and convenience of using liposomes to transfect miRNA mimics or inhibitors. This work uses miR-424 as an example, to provide a detailed introduction for the transfection process of miRNA mimics and inhibitors in the regular SW982 cell line and primary rheumatoid arthritis synovial fibroblasts (RASF) cells from patients by using lipofection, which can also serve as a reference to miRNA transfection in other cell lines. Key features • MiRNA mimics and inhibitors transfection in regular SW982 cell line and primary RASF cells. • Treatment and culture of RASF primary cells before transfection. • Using liposomes for transfection purposes.

16.
J Pharm Anal ; 12(4): 653-663, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36105166

ABSTRACT

MicroRNA-21 (miRNA-21) is highly expressed in various tumors. Small-molecule inhibition of miRNA-21 is considered to be an attractive novel cancer therapeutic strategy. In this study, fluoroquinolone derivatives A1-A43 were synthesized and used as miRNA-21 inhibitors. Compound A36 showed the most potent inhibitory activity and specificity for miRNA-21 in a dual-luciferase reporter assay in HeLa cells. Compound A36 significantly reduced the expression of mature miRNA-21 and increased the protein expression of miRNA-21 target genes, including programmed cell death protein 4 (PDCD4) and phosphatase and tensin homology deleted on chromosome ten (PTEN), at 10 µM in HeLa cells. The Cell Counting Kit-8 assay (CCK-8) was used to evaluate the antiproliferative activity of A36; the results showed that the IC50 value range of A36 against six tumor cell lines was between 1.76 and 13.0 µM. Meanwhile, A36 did not display cytotoxicity in BEAS-2B cells (lung epithelial cells from a healthy human donor). Furthermore, A36 significantly induced apoptosis, arrested cells at the G0/G1 phase, and inhibited cell-colony formation in HeLa cells. In addition, mRNA deep sequencing showed that treatment with A36 could generate 171 dysregulated mRNAs in HeLa cells, while the expression of miRNA-21 target gene dual-specificity phosphatase 5 (DUSP5) was significantly upregulated at both the mRNA and protein levels. Collectively, these findings demonstrated that A36 is a novel miRNA-21 inhibitor.

17.
Front Immunol ; 12: 619392, 2021.
Article in English | MEDLINE | ID: mdl-33841401

ABSTRACT

Objectives: Mounting evidence has demonstrated that microRNAs (miRNAs) participate in rheumatoid arthritis (RA). The role of highly conserved miR-15/107 family in RA has not been clarified yet, and hence investigated in this study. Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the expression of miRNAs and genes. Cell counting kit 8 (CCK-8) and FACS were used to detect proliferation and apoptosis. Protein expression was detected by using Western blotting. mRNA deep sequencing and cytokine antibody array were used to analyze differentially expressed genes, signaling pathways and cytokines. Results: The expression of miR-15a, miR-103, miR-497, and miR-646 was found decreased, while miR-424 increased in RA patients. MiR-424 and miR-497 were further investigated and the results showed that they could regulate the expression of multiple genes in rheumatoid arthritis synovial fibroblast (RASF) and affect signaling pathways. At the protein level, miR-497 mimic altered all the selected inflammation-related genes while miR-424 inhibitor only affected part of genes. MiR-497 mimic, rather than miR-424 inhibitor, had significant effects on proliferation and apoptosis of RASF. DICER1 was found to positively regulate the expression of miR-424 and miR-497, while DICER1 was also negatively regulated by miR-424. The increase of miR-424 could reduce miR-497 expression, thus forming a loop, which facilitated explaining the dysregulated miR-424 and miR-497 in RA. Conclusion: The miR-424 and miR-497 of miR-15/107 family affect cell proliferation and apoptosis in RA, and the proposed miR-424-DICER1-miR-497 feedback loop provides a novel insight into regulating miRNA expression and a candidate target for controlling RA.


Subject(s)
Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Synovial Membrane/metabolism , Apoptosis/genetics , Arthritis, Rheumatoid/pathology , Biomarkers , Cell Line , Cell Proliferation , Cell Survival , Cytokines/metabolism , Disease Susceptibility , Extracellular Matrix , Humans , Signal Transduction , Synovial Membrane/pathology
18.
Mol Immunol ; 134: 118-128, 2021 06.
Article in English | MEDLINE | ID: mdl-33770523

ABSTRACT

Growing research evidence suggests that elevated TLR2 is closely related to the occurrence and development of nonalcoholic steatohepatitis (NASH). However, a little is known about its regulatory mechanism. Here, we found that IFN-γ and TLR2 expression is significantly upregulated in NASH associated rat liver specimens. Meanwhile, IFN-γ positively regulated the expression of TLR2 and its target genes in NR8383 rat macrophage cells in dose- & time-dependent manner. Importantly, IFN-γ also regulated the related transcriptional factors pSTAT1 and IRF1. Moreover, we identified that the DNA fragment from -1000 to -200 bp of the TLR2 promoter region is responsible for STAT1 binding, especially the STAT1-BS3 (-591∼-573 bp). Further investigation verified that STAT1ß is essential in this process, rather than STAT1α. Overall, our findings suggest that IFN-γ promotes TLR2 transcription and its target genes expression by STAT1ß. This leads to the hepatic inflammation vicious cycle in NASH and provides new potential targets for treating NASH.


Subject(s)
Inflammation/pathology , Interferon-gamma/metabolism , Non-alcoholic Fatty Liver Disease/pathology , STAT1 Transcription Factor/metabolism , Toll-Like Receptor 2/metabolism , Animals , Diet, High-Fat/adverse effects , Inflammation/immunology , Inflammation/metabolism , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Rats , Signal Transduction/physiology , Transcriptional Activation
19.
Cartilage ; 12(1): 121-131, 2021 01.
Article in English | MEDLINE | ID: mdl-30596260

ABSTRACT

OBJECTIVE: Both selenium (Se) deficiency and mycotoxin T2 lead to epiphyseal plate lesions, similar to Kashin-Beck disease (KBD). However, regulation of selenoproteins synthesis mediated by SECISBP2, in response to these 2 environmental factors, remained unclear. The present study proposed to explore the mechanism behind the cartilage degradation resulting from Se deficiency and mycotoxin T2 exposure. DESIGN: Deep chondrocyte necrosis and epiphyseal plate lesions were replicated in Dark Agouti (DA) rats by feeding them T2 toxin/Se deficiency artificial synthetic diet for 2 months. RESULTS: Se deficiency led to decreased expression of COL2α1, while T2 treatment reduced the heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) expression, both of which affected the cartilage extracellular matrix metabolism in the rat models. The expression of Col2α1, Acan, Hs6st2, Secisbp2, Gpx1, and Gpx4 were all significantly decreased in cartilage tissues from DA rats, fed a Se-deficient diet or exposed to T2 toxin, contrary to Adamts4, whose expression was increased in both conditions. In addition, T2 treatment led to the decreased expression of SBP2, GPX1, GPX4, and total GPXs activity in C28/I2 cells. CONCLUSION: DA rats exposed to T2 toxin and/or Se-deficient conditions serve as the perfect model of KBD. The 2 environmental risk factors of KBD, which serve as a "double whammy," can intensify the extracellular matrix metabolic imbalance and the antioxidant activity of chondrocytes, leading to articular cartilage degradation and epiphyseal plate abnormalities similar to those observed in KBD.


Subject(s)
Growth Plate/drug effects , RNA-Binding Proteins/metabolism , Selenium/deficiency , Selenoproteins/metabolism , T-2 Toxin/toxicity , Animals , Cartilage, Articular/metabolism , Disease Models, Animal , Kashin-Beck Disease/genetics , Rats
20.
Osteoarthr Cartil Open ; 3(2): 100161, 2021 Jun.
Article in English | MEDLINE | ID: mdl-36474992

ABSTRACT

Through experiments to testify a candidate novel miRNA previously discovered by us is a real miRNA and involved in cartilage development. DESIGN: The miR-novel and the newly hairpin miRNA transcribed sequence (pre-miR-novel) was verified as a genuinely existing miRNA by northern blotting. The predicted secondary structure, sequence alignment and targets of pre-miR-novel were performed by "RNAstructure 5.3" program, LASTN2.8.0+/miRbase22 program and RNA hybird program, respective. GO/KEGG pathway analysis also were performed. The miR-novel expression in cartilage tissue during development was detected by RT-qPCR and dot blotting. The chondrocyte differentiation model was established to examine whether miR-novel is involved in cartilage development. The regulation of PRMT3 expression by novel miRNA was determined with the luciferase reporter gene assay and Western blotting after novel miRNA mimic or inhibitor transfection. RESULTS: It's potential role in specifically regulating rodent cartilage development and associated cellular processes. Furthermore, the expression of protein arginine N-methyltransferase 3 (PRMT3), as a predicted target of the novel miRNA, was found consistently downregulated at rat cartilage during developmental stages and RCJ3.1C5.18 (C5.18) cells during the proliferating and hypertrophic phases of the cartilage development, where the miR-novel expression was significantly up-regulated. Both the dual-luciferase reporter gene assay and the up- or down-regulation of miR-novel suggest that the later can specifically bind with the Prmt3 3'-UTR. CONCLUSION: Overall, this study provides the first comprehensive evidence that a genuine cartilage-specific novel miRNA directly targets PRMT3 and may regulate multitudinous cellular processes and signal transduction during cartilage development.

SELECTION OF CITATIONS
SEARCH DETAIL