Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37941459

ABSTRACT

OBJECTIVE: Anti-melanoma differentiation-associated gene 5 (MDA5)-positive dermatomyositis (DM) is a rare but life-threatening autoimmune disorder with a high risk to develop rapidly progressive interstitial lung disease. Current empirical therapies have limited improvement on patients' survival, as little is known about the aetiology of MDA5 DM. To best understand its immune landscape, we applied single-cell RNA sequencing (scRNA-seq) to peripheral blood samples from DM patients and healthy controls. METHODS: Peripheral blood mononuclear cells (PBMCs) from eight DM patients, comprising three distinct subtypes, as well as two healthy donors, were sequenced by 10X Genomics platform. Additional scRNA-seq data of four healthy donors were incorporated for further bioinformatic analysis. RESULTS: Aberrant increased proportions of CD14+ monocyte and plasma cells were observed in MDA5 DM samples. Moreover, we found overactivated type I interferon response and antiviral immunity in both innate and adaptive immune cells derived from MDA5 DM patients, which was positively correlated with disease severity. Importantly, a unique subset of CD14+ monocyte that highly expressed interferon alpha-inducible protein 27 (IFI27, a biomarker for viral infection) and interferon induced with helicase C domain 1 (IFIH1, encodes MDA5) was specifically identified in MDA5 DM samples for the first time. CONCLUSION: Our study demonstrates the peripheral immune cell atlas of different DM subtypes, provides compelling evidence for viral infection-derived origin of MDA5 DM, and offers potential targets for innovative therapeutic interventions.

2.
Mol Cell Proteomics ; 20: 100148, 2021.
Article in English | MEDLINE | ID: mdl-34530157

ABSTRACT

Lysine acylations are reversible and ubiquitous post-translational modifications that play critical roles in regulating multiple cellular processes. In the current study, highly abundant and dynamic acetylation, besides succinylation, was uncovered in a soil bacterium, Streptomyces coelicolor. By affinity enrichment using anti-acetyl-lysine antibody and the following LC-MS/MS analysis, a total of 1298 acetylation sites among 601 proteins were identified. Bioinformatics analyses suggested that these acetylated proteins have diverse subcellular localization and were enriched in a wide range of biological functions. Specifically, a majority of the acetylated proteins were also succinylated in the tricarboxylic acid cycle and protein translation pathways, and the bimodification occurred at the same sites in some proteins. The acetylation and succinylation sites were quantified by knocking out either the deacetylase ScCobB1 or the desuccinylase ScCobB2, demonstrating a possible competitive relationship between the two acylations. Moreover, in vitro experiments using synthetically modified peptides confirmed the regulatory crosstalk between the two sirtuins, which may be involved in the collaborative regulation of cell physiology. Collectively, these results provided global insights into the S. coelicolor acylomes and laid a foundation for characterizing the regulatory roles of the crosstalk between lysine acetylation and succinylation in the future.


Subject(s)
Bacterial Proteins/metabolism , Lysine/metabolism , Sirtuins/metabolism , Streptomyces coelicolor/metabolism , Acetylation , Bacterial Proteins/genetics , Metabolic Networks and Pathways , Protein Interaction Maps , Protein Processing, Post-Translational , Proteome , Sirtuins/genetics , Streptomyces coelicolor/genetics , Succinic Acid/metabolism
3.
Nucleic Acids Res ; 48(D1): D983-D991, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31598699

ABSTRACT

Recent advances in genome sequencing and functional genomic profiling have promoted many large-scale quantitative trait locus (QTL) studies, which connect genotypes with tissue/cell type-specific cellular functions from transcriptional to post-translational level. However, no comprehensive resource can perform QTL lookup across multiple molecular phenotypes and investigate the potential cascade effect of functional variants. We developed a versatile resource, named QTLbase, for interpreting the possible molecular functions of genetic variants, as well as their tissue/cell-type specificity. Overall, QTLbase has five key functions: (i) curating and compiling genome-wide QTL summary statistics for 13 human molecular traits from 233 independent studies; (ii) mapping QTL-relevant tissue/cell types to 78 unified terms according to a standard anatomogram; (iii) normalizing variant and trait information uniformly, yielding >170 million significant QTLs; (iv) providing a rich web client that enables phenome- and tissue-wise visualization; and (v) integrating the most comprehensive genomic features and functional predictions to annotate the potential QTL mechanisms. QTLbase provides a one-stop shop for QTL retrieval and comparison across multiple tissues and multiple layers of molecular complexity, and will greatly help researchers interrogate the biological mechanism of causal variants and guide the direction of functional validation. QTLbase is freely available at http://mulinlab.org/qtlbase.


Subject(s)
Databases, Genetic , Genome-Wide Association Study , Genomics , Genotype , Phenotype , Quantitative Trait Loci , Quantitative Trait, Heritable , Computational Biology/methods , Genomics/methods , Humans , Software , Web Browser
4.
J Virol ; 88(19): 11469-79, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25056890

ABSTRACT

UNLABELLED: Japanese encephalitis (JE) is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been phylogenetically divided into five genotypes. Recent surveillance data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. To investigate the mechanism behind the genotype shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination, we collected (i) all full-length and partial JEV molecular sequences and (ii) associated genotype and host information comprising a data set of 873 sequences. We then examined differences between the two genotypes at the genetic and epidemiological level by investigating amino acid mutations, positive selection, and host range. We found that although GI is dominant, it has fewer sites predicted to be under positive selection, a narrower host range, and significantly fewer human isolates. For the E protein, the sites under positive selection define a haplotype set for each genotype that shows striking differences in their composition and diversity, with GIII showing significantly more variety than GI. Our results suggest that GI has displaced GIII by achieving a replication cycle that is more efficient but is also more restricted in its host range. IMPORTANCE: Japanese encephalitis is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been divided into five genotypes based on sequence similarity. Recent data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. Understanding the reasons behind this shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination is important for controlling the spread of the virus and reducing human fatalities. We collected all available full-length and partial JEV molecular sequences and associated genotype and host information. We then examined differences between the two genotypes at the genetic and epidemiological levels by investigating amino acid mutations, positive selection, and host range. Our results suggest that GI has displaced GIII by achieving a replication cycle that is more efficient but more restricted in host range.


Subject(s)
Culicidae/virology , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Genotype , Insect Vectors/virology , Phylogeny , Animals , Asia/epidemiology , Ceratopogonidae , Chiroptera , Disease Reservoirs , Encephalitis Virus, Japanese/classification , Encephalitis, Japanese/virology , Horses , Host Specificity , Host-Pathogen Interactions , Humans , Models, Molecular , RNA, Viral/genetics , Serotyping , Swine
5.
BMC Infect Dis ; 14: 212, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24742224

ABSTRACT

BACKGROUND: Rabies reemerged in China during the 1990s with a gradual increase in the number and geographical dispersion of cases. As a consequence, a national surveillance program was introduced in 2005 to investigate the outbreak in terms of vaccination coverage, PEP treatment, and geographical and social composition. METHODS: The surveillance program was coordinated at the national level by the Chinese Center for Disease Control (CCDC) with data collected by regional health centres and provincial CCDCs, and from other official sources. Various statistical and multivariate analysis techniques were then used to evaluate the role and significance of implemented policies and strategies related to rabies prevention and control over this period. RESULTS: From 2005-2012, 19,221 cases were reported across 30 provinces, but these primarily occurred in rural areas of southern and eastern China, and were predominantly associated with farmers, students and preschool children. In particular, detailed analysis of fatalities reported from 2010 to 2011 shows they were associated with very low rates of post exposure treatment compared to the cases with standard PEP. Nevertheless, regulation of post-exposure prophylaxis quality, together with improved management and vaccination of domesticated animals, has improved prevention and control of rabies. CONCLUSIONS: The various control policies implemented by the government has played a key role in reducing rabies incidences in China. However, level of PEP treatment varies according to sex, age, degree and site of exposure, as well as the source of infection. Regulation of PEP quality together with improved management and vaccination of domesticated animals have also helped to improve prevention and control of rabies.


Subject(s)
Rabies Vaccines/administration & dosage , Rabies/prevention & control , Adolescent , Adult , Aged , Animals , Cats , Child , Child, Preschool , China/epidemiology , Dogs , Epidemiological Monitoring , Female , Humans , Infant , Male , Middle Aged , Post-Exposure Prophylaxis , Rabies/drug therapy , Rabies/epidemiology , Rabies/veterinary , Young Adult
6.
Biomed Environ Sci ; 27(1): 35-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24553372

ABSTRACT

OBJECTIVE: To perform pathological observation and etiological identification of specimens collected from dairy cows, beef cattle and dogs which were suspected of rabies in Inner Mongolia in 2011, and analyze their etiological characteristics. METHODS: Pathological observation was conducted on the brain specimens of three infected animals with Hematoxylin-Eosin staining, followed by confirmation using immunofluorescence and nested RT-PCR methods. Finally, phylogenetic analysis was conducted using the virus N gene sequence amplified from three specimens. RESULTS: Eosinophilic and cytoplasmic inclusion bodies were seen in neuronal cells of the CNS; and rabies non-characteristic histopathological changes were also detected in the CNS. The three brain specimens were detected positive. N gene nucleotide sequence of these three isolates showed distinct sequence identity, therefore they fell into different groups in the phylogenetic analysis. N gene in the cow and dog had higher homology with that in Hebei isolate, but that in the beef cattle had higher homology with that in Mongolian lupine isolate and Russian red fox isolate. CONCLUSION: Rabies were observed in the dairy cow, beef cattle and canine in the farm in Inner Mongolia, in 2011, which led to a different etiologic characteristics of the epidemic situation.


Subject(s)
Brain/pathology , Cattle Diseases/epidemiology , Dog Diseases/diagnosis , Rabies/veterinary , Acetazolamide , Animals , Cattle , Cattle Diseases/pathology , Dog Diseases/epidemiology , Dogs , Mongolia/epidemiology , Nucleoproteins/genetics , Phylogeny , Rabies/epidemiology , Rabies virus/genetics , Time Factors
7.
Adv Sci (Weinh) ; : e2308990, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297408

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic and lethal disease. Gasdermins are primarily associated with necrosis via membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. In this study, GSDMC upregulation during PDAC progression is reported. GSDMC directly induces genes related to stemness, EMT, and immune evasion. Targeting Gsdmc in murine PDAC models reprograms the immunosuppressive tumor microenvironment, rescuing the recruitment of anti-tumor immune cells through CXCL9. This not only results in diminished tumor initiation, growth and metastasis, but also enhances the response to KRASG12D inhibition and PD-1 checkpoint blockade, respectively. Mechanistically, it is discovered that ADAM17 cleaves GSDMC, releasing nuclear fragments binding to promoter regions of stemness, metastasis, and immune evasion-related genes. Pharmacological inhibition of GSDMC cleavage or prevention of its nuclear translocation is equally effective in suppressing GSDMC's downstream targets and inhibiting PDAC progression. The findings establish GSDMC as a potential therapeutic target for enhancing treatment response in this deadly disease.

8.
Hum Cell ; 38(1): 4, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39436499

ABSTRACT

The level of transforming growth factor-beta2 (TGFß2) is elevated in aqueous humor of partial glaucoma patients, and induced trabecular meshwork (TM) fibrosis, which could cause TM cells dysfunction and lead to intraocular pressure (IOP) elevation. Autophagy is a dynamic process of bulk degradation of organelles and proteins under stress condition, while its functions in fibrotic development remain controversial. Meanwhile, it is still unclear if activation of autophagy could ameliorate TGFß2-induced fibrosis in TM cells. In this study, we demonstrated that autophagy activation with Rapamycin or Everolimus could ameliorate TM fibrosis induced by TGFß2. We also proved that activation of autophagy may decrease TM cells fibrosis and reduce elevated IOP induced by TGFß2 in vivo, while Rapamycin or Everolimus has no effect on TGFß/Smad3 pathway activity and fibrotic genes expression. However, when Chloroquine phosphate blocks autophagy-lysosome pathway, the protective effect of Rapamycin or Everolimus on fibrosis was weakened. We established that autophagy activation ameliorates TM fibrosis through promoting fibrotic proteins degradation.


Subject(s)
Autophagy , Fibrosis , Sirolimus , Trabecular Meshwork , Transforming Growth Factor beta2 , Autophagy/genetics , Autophagy/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/pathology , Transforming Growth Factor beta2/metabolism , Sirolimus/pharmacology , Humans , Animals , Proteolysis , Everolimus/pharmacology , Cells, Cultured , Glaucoma/pathology , Glaucoma/metabolism , Gene Expression/genetics , Smad3 Protein/metabolism , Signal Transduction , Chloroquine/pharmacology , Intraocular Pressure
9.
Int J Biol Macromol ; 269(Pt 2): 131842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679249

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most widespread illnesses in the world's swine business. To detect the antibodies against PRRSV-2, a blocking enzyme-linked immunosorbent assay (B-ELISA) was developed, utilizing a PRRSV-2 N protein monoclonal antibody as the detection antibody. A checkerboard titration test was used to determine the optimal detection antibody dilution, tested pig serum dilution and purified PRRSV coated antigen concentration. After analyzing 174 negative pig sera and 451 positive pig sera, a cutoff value of 40 % was selected to distinguish between positive and negative sera using receiver operating characteristic curve analysis. The specificity and sensitivity of the assay were evaluated to equal 99.8 % and 96 %, respectively. The method had no cross-reaction with PCV2, PRV, PPV, CSFV, PEDV, TGEV, and PRRSV-1 serum antibodies, and the coefficients of variation of intra-batch and inter-batch repeatability experiments were both <10 %. A total of 215 clinical serum samples were tested, and the relative coincidence rate with commercial ELISA kit was 99.06 %, and the kappa value was 0.989, indicating that these two detection results exhibited high consistency. Overall, the B-ELISA should serve as an ideal method for large-scale serological investigation of PRRSV-2 antibodies in domestic pigs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Swine , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine Reproductive and Respiratory Syndrome/blood , Sensitivity and Specificity , Reproducibility of Results , Nucleocapsid Proteins/immunology , ROC Curve
10.
Int J Biol Macromol ; 260(Pt 1): 129425, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219937

ABSTRACT

Since 2011, PRV has resurged in China and is characterized by a mutated strain with significant alterations in antigenicity and virulence. Therefore, we hypothesized that antibody detection kits based on classic PRV strains may have limitations in detecting PRV variants. For more sensitive antibody detection of PRV variants, two MABs targeting the gB and gE proteins were developed. IFA revealed that these MABs exhibited strong reactivity toward both classic and variant PRV strains. MAB-gE recognizes a novel conserved linear B-cell epitope (41PSAEVWD47), while MAB-gB recognizes a conformational B-cell epitope. The binding of both MABs was effectively inhibited in the PRV-positive pig blood samples. Accordingly, we established blocking-ELISAs to detect anti-PRV gB and gE antibodies, which achieved higher sensitivity than commercial kits. Moreover, the clinical serum samples results of our method and that of IFA were in high agreement, and our test results had a higher coincidence rate than that of a commercial kit. Assessing antibody levels by our methods at various times following immunization and challenge accurately reflected the trend of antibody-level changes and revealed the conversion to positive antibody status before the commercial kit. Our method is crucial for monitoring PRV infections, assessing immune responses, and controlling disease.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine , Animals , Epitopes, B-Lymphocyte , Antibodies, Viral , Antibodies, Monoclonal
11.
Porcine Health Manag ; 10(1): 5, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254191

ABSTRACT

BACKGROUND: To investigate the prevalence and evolution of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) at commercial fattening pig farms, a total of 1397 clinical samples were collected from a single fattening cycle at seven pig farms in five provinces of China from 2020 to 2021. RESULTS: The RT‒PCR results revealed that PRRSV was present on all seven farms, and the percentage of PRRSV-positive individuals was 17.54-53.33%. A total of 344 partial NSP2 gene sequences and 334 complete ORF5 gene sequences were obtained from the positive samples. The statistical results showed that PRRSV-2 was present on all seven commercial fattening farms, and PRRSV-1 was present on only one commercial fattening farm. A total of six PRRSV-2 subtypes were detected, and five of the seven farms had two or more PRRSV-2 subtypes. L1.8 (L1C) PRRSV was the dominant epidemic strain on five of the seven pig farms. Sequence analysis of L1.8 (L1C) PRRSV from different commercial fattening pig farms revealed that its consistency across farms varied substantially. The amino acid alignment results demonstrated that there were 131 aa discontinuous deletions in NSP2 between different L1.8 (L1C) PRRSV strains and that the GP5 mutation in L1.8 (L1C) PRRSV was mainly concentrated in the peptide signal region and T-cell epitopes. Selection pressure analysis of GP5 revealed that the use of the PRRSV MLV vaccine had no significant episodic diversifying effect on L1.8 (L1C) PRRSV. CONCLUSION: PRRSV infection is common at commercial fattening pig farms in China, and the percentage of positive individuals is high. There are multiple PRRSV subtypes of infection at commercial fattening pig farms in China. L1.8 (L1C) is the main circulating PRRSV strain on commercial fattening pig farms. L1.8 (L1C) PRRSV detected at different commercial fattening pig farms exhibited substantial differences in consistency but similar molecular characteristics. The pressure on the GP5 of L1.8 (L1C) PRRSV may not be directly related to the use of the vaccines.

12.
Innovation (Camb) ; 5(2): 100565, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38379791

ABSTRACT

Partial endothelial-to-mesenchymal transition (EndMT) is an intermediate phenotype observed in endothelial cells (ECs) undergoing a transition toward a mesenchymal state to support neovascularization during (patho)physiological angiogenesis. Here, we investigated the occurrence of partial EndMT in ECs under hypoxic/ischemic conditions and identified general transcription factor IIH subunit 4 (GTF2H4) as a positive regulator of this process. In addition, we discovered that GTF2H4 collaborates with its target protein excision repair cross-complementation group 3 (ERCC3) to co-regulate partial EndMT. Furthermore, by using phosphorylation proteomics and site-directed mutagenesis, we demonstrated that GTF2H4 was involved in the phosphorylation of receptor coactivator 3 (NCOA3) at serine 1330, which promoted the interaction between NCOA3 and p65, resulting in the transcriptional activation of NF-κB and the NF-κB/Snail signaling axis during partial EndMT. In vivo experiments confirmed that GTF2H4 significantly promoted partial EndMT and angiogenesis after ischemic injury. Collectively, our findings reveal that targeting GTF2H4 is promising for tissue repair and offers potential opportunities for treating hypoxic/ischemic diseases.

13.
Microbiol Spectr ; 11(6): e0198423, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819126

ABSTRACT

IMPORTANCE: Both highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) and NADC30-like PRRSV have caused tremendous economic losses to the Chinese pig industry. In this study, a good challenge model was established to evaluate the protection afforded by the candidate SD-R vaccine against infection with a representative HP-PRRSV strain (HuN4). The control piglets in the challenge experiment displayed obvious clinical symptoms of PRRSV infection, with a mortality rate up to 40%. In contrast, all the piglets in the vaccinated challenged group survived, and only some pigs had transient fever. The daily gain of SD-R immunized group piglets was significantly increased, and the pathological changes were significantly reduced. In addition, the viral replication levels in the serum of the immunized group were significantly lower than those of the challenged control group. The live attenuated vaccine SD-R strain can provide protection against HP-PRRSV challenge, indicating that the SD-R strain is a promising vaccine candidate for use in the swine industry.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Swine , Animals , Porcine Reproductive and Respiratory Syndrome/prevention & control , Vaccines, Attenuated , Antibodies, Viral
14.
Vet Sci ; 10(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36851437

ABSTRACT

Since 2011, pseudorabies virus (PRV) has recurred in several vaccinated pig farms in China. PRV variants with high virulence were found to be the main cause of the outbreaks. In the face of the PRV epidemic, detection of the wild strain is as important as vaccine immunization, so we hoped to achieve differential diagnosis of PRV by obtaining a monoclonal antibody (mAB) that could be used to identify the wild strain. In this study, we used a novel immunization and screening strategy to prepare an mAB and obtained mAB 1H5 against the gE glycoprotein. An immunofluorescence assay (IFA) revealed that this mAB was specific to both classic and variant strains of PRV. Subsequently, we further identified the linear epitopes of B cells recognized using the mAB. The mAB 1H5 bound at 67RRAG70, which is a novel epitope and is conserved in almost all PRV strains. These findings provide novel insight into the structure and function of PRV proteins, the analysis of antigenic epitope characteristics, and the establishment of antigen or antibody detection methods.

15.
Clin Transl Med ; 13(8): e1377, 2023 08.
Article in English | MEDLINE | ID: mdl-37598403

ABSTRACT

BACKGROUND: SIRT6, an important NAD+ -dependent protein, protects endothelial cells from inflammatory and oxidative stress injuries. However, the role of SIRT6 in cardiac microvascular endothelial cells (CMECs) under ischemia-reperfusion injury (IRI) remains unclear. METHODS: The HUVECs model of oxygen-glucose deprivation/reperfusion (OGD/R) was established to simulate the endothelial IRI in vitro. Endoplasmic reticulum oxidase 1 alpha (Ero1α) mRNA and protein levels in SIRT6-overexpressing or SIRT6-knockdown cells were measured by qPCR and Western blotting. The levels of H2 O2 and mitochondrial reactive oxygen species (ROS) were detected to evaluate the status of oxidative stress. The effects of SIRT6 deficiency and Ero1α knockdown on cellular endoplasmic reticulum stress (ERS), inflammation, apoptosis and barrier function were detected by a series of molecular biological experiments and functional experiments in vitro. Chromatin immunoprecipitation, Western blotting, qPCR, and site-specific mutation experiments were used to examine the underlying molecular mechanisms. Furthermore, endothelial cell-specific Sirt6 knockout (ecSirt6-/- ) mice were subjected to cardiac ischemia-reperfusion surgery to investigate the effects of SIRT6 in CMECs in vivo. RESULTS: The expression of Ero1α was significantly upregulated in SIRT6-knockdown endothelial cells, and high Ero1α expression correlated with the accumulation of H2 O2 and mitochondrial ROS. In addition, SIRT6 deficiency increased ERS, inflammation, apoptosis and endothelial permeability, and these effects could be significantly attenuated by Ero1α knockdown. The deacetylase catalytic activity of SIRT6 was important in regulating Ero1α expression and these biological processes. Mechanistically, SIRT6 inhibited the enrichment of HIF1α and p300 at the Ero1α promoter through deacetylating H3K9, thereby antagonizing HIF1α/p300-mediated Ero1α expression. Compared with SIRT6-wild-type (SIRT6-WT) cells, cells expressing the SIRT6-H133Y-mutant and SIRT6-R65A-mutant exhibited increased Ero1α expression. Furthermore, ecSirt6-/- mice subjected to ischemia-reperfusion surgery exhibited increased Ero1α expression and ERS in CMECs and worsened injuries to microvascular barrier function and cardiac function. CONCLUSIONS: Our results revealed an epigenetic mechanism associated with SIRT6 and Ero1α expression and highlighted the therapeutic potential of targeting the SIRT6-HIF1α/p300-Ero1α axis.


Subject(s)
Endothelial Cells , Sirtuins , Animals , Mice , Acetylation , Reactive Oxygen Species , Oxidative Stress , CME-Carbodiimide , Sirtuins/genetics
16.
Front Microbiol ; 14: 1186322, 2023.
Article in English | MEDLINE | ID: mdl-37323894

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused serious economic losses to the pig industry worldwide. During the continuous monitoring of PRRSV, a new PRRSV strain type with novel characteristics was first identified in three different regions of Shandong Province. These strains presented a novel deletion pattern (1 + 8 + 1) in the NSP2 region and belonged to a new branch in sublineage 8.7 based on the ORF5 gene phylogenetic tree. To further study the genomic characteristics of the new-branch PRRSV, we selected a sample from each of the three farms for whole-genome sequencing and sequence analysis. Based on the phylogenetic analysis of the whole genome, these strains formed a new independent branch in sublineage 8.7, which showed a close relationship with HP-PRRSV and intermediate PRRSV according to nucleotide and amino acid homology but displayed a completely different deletion pattern in NSP2. Recombinant analysis showed that these strains presented similar recombination patterns, all of which involved recombination with QYYZ in the ORF3 region. Furthermore, we found that the new-branch PRRSV retained highly consistent nucleotides at positions 117-120 (AGTA) of a quite conserved motif in the 3'-UTR; showed similar deletion patterns in the 5'-UTR, 3'-UTR and NSP2; retained characteristics consistent with intermediate PRRSV and exhibited a gradual evolution trend. The above results showed that the new-branch PRRSV strains may have the same origin and be similar to HP-PPRSV also evolved from intermediate PRRSV, but are distinct strains that evolved simultaneously with HP-PRRSV. They persist in some parts of China through rapid evolution, recombine with other strains and have the potential to become epidemic strains. The monitoring and biological characteristics of these strains should be further studied.

17.
Vaccines (Basel) ; 11(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37631917

ABSTRACT

NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) strains were first detected in China in 2017 and became major circulating strains in 2021. Our previous study showed that the live-attenuated vaccine candidate SD-R strain could provide broad cross-protection against different NADC30-like PRRSVs (sublineage 1.8). However, the protective effect of SD-R against NADC34-like PRRSV is unclear. Here, a novel NADC34-like PRRSV, LNTZJ1341-2012, was isolated from a pig farm experiencing disease in 2020. Sequence analysis revealed that LNTZJ1341-2012 belonged to PRRSV-2 sublineage 1.5, exhibited the same Nsp2 amino-acid deletion characteristics as IA/2014/NADC34, and had not recombined with other strains. Additionally, a good challenge model was established to evaluate the protection afforded by the candidate SD-R vaccine against infection with a representative NADC34-like strain (LNTZJ1341-2012). The control piglets in the challenge experiment displayed clinical signs typical of PRRSV infection, including transient fever, high viremia, mild clinical symptoms, and histopathological changes in the lungs and submaxillary lymph nodes. In contrast, SD-R vaccination significantly reduced serum and lung tissue viral loads, and vaccinated piglets did not show any clinical symptoms or histopathological changes. Our results demonstrated that LNTZJ1341-2012 is a mildly virulent NADC34-like PRRSV and that the live-attenuated vaccine SD-R can prevent the onset of clinical signs upon challenge with the NADC34-like PRRSV LNTZJ1341-2012 strain, indicating that SD-R is a promising vaccine candidate for the swine industry.

18.
Aging Dis ; 13(6): 1787-1822, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36465178

ABSTRACT

As an important NAD+-dependent enzyme, SIRT6 has received significant attention since its discovery. In view of observations that SIRT6-deficient animals exhibit genomic instability and metabolic disorders and undergo early death, SIRT6 has long been considered a protein of longevity. Recently, growing evidence has demonstrated that SIRT6 functions as a deacetylase, mono-ADP-ribosyltransferase and long fatty deacylase and participates in a variety of cellular signaling pathways from DNA damage repair in the early stage to disease progression. In this review, we elaborate on the specific substrates and molecular mechanisms of SIRT6 in various physiological and pathological processes in detail, emphasizing its links to aging (genomic damage, telomere integrity, DNA repair), metabolism (glycolysis, gluconeogenesis, insulin secretion and lipid synthesis, lipolysis, thermogenesis), inflammation and cardiovascular diseases (atherosclerosis, cardiac hypertrophy, heart failure, ischemia-reperfusion injury). In addition, the most recent advances regarding SIRT6 modulators (agonists and inhibitors) as potential therapeutic agents for SIRT6-mediated diseases are reviewed.

19.
Front Microbiol ; 13: 882112, 2022.
Article in English | MEDLINE | ID: mdl-35572691

ABSTRACT

A latex microsphere-based immunochromatographic strip (ICS) test was successfully developed for the rapid and sensitive detection of porcine reproductive and respiratory syndrome virus (PRRSV). The PRRSV N protein-specific monoclonal antibody (mAb) 1H4 labeled with latex microspheres was dispensed on a conjugate pad for use as the detector. The same mAb and goat anti-mouse antibody were blotted on a nitrocellulose membrane to generate test and control lines, respectively. The limit of virus detection was approximately 5 × 102.0 median tissue culture infectious dose (TCID50)/ml, and the limit of N protein detection was approximately 15 ng/ml. Other common porcine viruses were tested to evaluate the specificity of the ICS, and positive results were observed for only North American-type PRRSV. A comparison of the strip with a standard diagnostic test (reverse transcriptase polymerase chain reaction, RT-PCR) was also performed, and the results showed that the ICS test exhibited relatively high specificity and sensitivity (90.32 and 73.91%, respectively) and relatively high positive predictive value (PPV) and negative predictive value (NPV; 85 and 82.35%, respectively). These results suggest that the ICS test can be used to rapidly and accurately detect PRRSV and can be suitable for diagnostic applications in the field.

20.
Front Microbiol ; 13: 1067173, 2022.
Article in English | MEDLINE | ID: mdl-36532471

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) has brought serious economic losses to pig industry. PRRSV-1 have existed in China for more than 25 years. The prevalence and features of PRRSV-1 on Chinese farms are unclear. We continuously monitored PRRSV in a pig farm with strict biosafety measures in Henan Province, China, in 2020. The results showed that multiple types of PRRSV coexisted on this single pig farm. PRRSV-1 was one of the main circulating strains on the farm and was responsible for infections throughout nearly the entire epidemic cycle. Phylogenetic analysis showed that PRRSV-1 isolates from this pig farm formed an independent branch, with all isolates belonging to BJEU06-1-like PRRSV. The analysis of selection pressure on ORF5 on this branch identified 5 amino acids as positive selection sites, indicating that PRRSV-1 had undergone adaptive evolution on this farm. According to the analysis of ORF5 of PRRSV-1 on this farm, the evolutionary rate of the BJEU06-1-like branch was estimated to be 1.01 × 10-2 substitutions/site/year. To further understand the genome-wide characteristics of PRRSV-1 on this pig farm, two full-length PRRSV-1 genomes representative of pig farms were obtained. The results of amino acid alignment revealed that although one NSP2 deletion was consistent with BJEU06-1, different new features were found in ORF3 and ORF4. According to the above results, PRRSV-1 has undergone considerable evolution in China. This study is the first to report the prevalence and characteristics of PRRSV-1 on a large farm in mainland China, which will provide a reference for the identification and further prevention and control of PRRSV-1.

SELECTION OF CITATIONS
SEARCH DETAIL