Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Inorg Chem ; 57(19): 11874-11883, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30198714

ABSTRACT

It is challenging to achieve p-type doping of zinc oxides (ZnO), which are of interest as transparent conductors in optoelectronics. A ZnO-related ternary compound, SrZnO2, was investigated as a potential host for p-type conductivity. First-principles investigations were used to select from a range of candidate dopants the substitution of Li+ for Zn2+ as a stable, potentially p-type, doping mechanism in SrZnO2. Subsequently, single-phase bulk samples of a new p-type-doped oxide, SrZn1- xLi xO2 (0 < x < 0.06), were prepared. The structural, compositional, and physical properties of both the parent SrZnO2 and SrZn1- xLi xO2 were experimentally verified. The band gap of SrZnO2 was calculated using HSE06 at 3.80 eV and experimentally measured at 4.27 eV, which confirmed the optical transparency of the material. Powder X-ray diffraction and inductively coupled plasma analysis were combined to show that single-phase ceramic samples can be accessed in the compositional range x < 0.06. A positive Seebeck coefficient of 353(4) µV K-1 for SrZn1- xLi xO2, where x = 0.021, confirmed that the compound is a p-type conductor, which is consistent with the pO2 dependence of the electrical conductivity observed in all SrZn1- xLi xO2 samples. The conductivity of SrZn1- xLi xO2 is up to 15 times greater than that of undoped SrZnO2 (for x = 0.028 σ = 2.53 µS cm-1 at 600 °C and 1 atm of O2).

2.
ACS Omega ; 6(14): 9692-9699, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869949

ABSTRACT

In this study, electronic structure calculations and Bader charge analysis have been completed on the inverse, intermediate, and normal spinel structures of NiCo2O4 in both primitive and conventional cells, using density functional theory with Hubbard U correction. Three spinel structures have been computed in the primitive cell, where the fully inverse spinel, 50% intermediate spinel, and normal spinel can be acquired by swapping Ni and Co atoms on tetrahedral and octahedral sites. Furthermore, NiCo2O4 with different degrees of inversion in the conventional cells was also investigated, along with their doping energies. Confirmed by the assigned formal charges, magnetic moments, and decomposed density of state, our results suggest that the electronic properties of Ni and Co on the tetrahedral site can be altered by swapping Ni and Co atoms, whereas both Ni and Co on the octahedral site are uninfluenced. A simple and widely used model, crystal field theory, is also compared with our calculations and shows a consistent prediction about the cation distribution in NiCo2O4. This study analyzes the correlation between cation arrangements and formal charges, which could potentially be used to predict the desired electronic properties of NiCo2O4 for various applications.

3.
Chem Sci ; 7(7): 4713-4719, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-30155120

ABSTRACT

The self-assembly of low molecular weight gelators to form gels has enormous potential for cell culturing, optoelectronics, sensing, and for the preparation of structured materials. There is an enormous "chemical space" of gelators. Even within one class, functionalised dipeptides, there are many structures based on both natural and unnatural amino acids that can be proposed and there is a need for methods that can successfully predict the gelation propensity of such molecules. We have successfully developed computational models, based on experimental data, which are robust and are able to identify in silico dipeptide structures that can form gels. A virtual computational screen of 2025 dipeptide candidates identified 9 dipeptides that were synthesised and tested. Every one of the 9 dipeptides synthesised and tested were correctly predicted for their gelation properties. This approach and set of tools enables the "dipeptide space" to be searched effectively and efficiently in order to deliver novel gelator molecules.

SELECTION OF CITATIONS
SEARCH DETAIL