Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Semin Cancer Biol ; 86(Pt 2): 1086-1104, 2022 11.
Article in English | MEDLINE | ID: mdl-35218902

ABSTRACT

Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-ß/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles (NPs) in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded NPs have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.


Subject(s)
Nanomedicine , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , Comprehension , Neoplasm Recurrence, Local , Signal Transduction , Inflammation/drug therapy
2.
Mol Pharm ; 20(8): 3698-3740, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37486263

ABSTRACT

Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.


Subject(s)
Epstein-Barr Virus Infections , Neoplasms , Humans , Epstein-Barr Virus Infections/drug therapy , Herpesvirus 4, Human , Carcinogenesis , Neoplasms/drug therapy , Neoplasms/prevention & control , Neoplasms/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
Crit Rev Food Sci Nutr ; 63(19): 3302-3332, 2023.
Article in English | MEDLINE | ID: mdl-34613853

ABSTRACT

Persistent respiratory tract inflammation contributes to the pathogenesis of various chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. These inflammatory respiratory diseases have been a major public health concern as they are the leading causes of worldwide mortality and morbidity, resulting in heavy burden on socioeconomic growth throughout these years. Although various therapeutic agents are currently available, the clinical applications of these agents are found to be futile due to their adverse effects, and most patients remained poorly controlled with a low quality of life. These drawbacks have necessitated the development of novel, alternative therapeutic agents that can effectively improve therapeutic outcomes. Recently, nutraceuticals such as probiotics, vitamins, and phytochemicals have gained increasing attention due to their nutritional properties and therapeutic potential in modulating the pathological mechanisms underlying inflammatory respiratory diseases, which could ultimately result in improved disease control and overall health outcomes. As such, nutraceuticals have been held in high regard as the possible alternatives to address the limitations of conventional therapeutics, where intensive research are being performed to identify novel nutraceuticals that can positively impact various inflammatory respiratory diseases. This review provides an insight into the utilization of nutraceuticals with respect to their molecular mechanisms targeting multiple signaling pathways involved in the pathogenesis of inflammatory respiratory diseases.


Subject(s)
Asthma , Respiratory Tract Diseases , Humans , Quality of Life , Dietary Supplements , Asthma/drug therapy , Respiratory Tract Diseases/drug therapy
4.
Mol Cancer ; 21(1): 31, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35081970

ABSTRACT

Head and neck cancer is the sixth most common cancer across the globe. This is generally associated with tobacco and alcohol consumption. Cancer in the pharynx majorly arises through human papillomavirus (HPV) infection, thus classifying head and neck squamous cell carcinoma (HNSCC) into HPV-positive and HPV-negative HNSCCs. Aberrant, mesenchymal-epithelial transition factor (c-MET) signal transduction favors HNSCC progression by stimulating proliferation, motility, invasiveness, morphogenesis, and angiogenesis. c-MET upregulation can be found in the majority of head and neck squamous cell carcinomas. c-MET pathway acts on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K), alpha serine/threonine-protein kinase (Akt), mitogen-activated protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. c-MET also establishes a crosstalk pathway with epidermal growth factor receptor (EGFR) and contributes towards chemoresistance in HNSCC. In recent years, the signaling communications of c-MET/HGF in metabolic dysregulation, tumor-microenvironment and immune modulation in HNSCC have emerged. Several clinical trials have been established against c-MET/ hepatocyte growth factor (HGF) signaling network to bring up targeted and effective therapeutic strategies against HNSCC. In this review, we discuss the molecular mechanism(s) and current understanding of c-MET/HGF signaling and its effect on HNSCC.


Subject(s)
Head and Neck Neoplasms/etiology , Head and Neck Neoplasms/metabolism , Hepatocyte Growth Factor/metabolism , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Disease Management , Disease Susceptibility , Drug Resistance, Neoplasm/genetics , Energy Metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/therapy , Humans , Immunity , Treatment Outcome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
5.
Arch Microbiol ; 204(3): 169, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35157149

ABSTRACT

The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.


Subject(s)
Wastewater , Water Pollutants, Chemical , Bacteria , Biodegradation, Environmental , Fungi , Humans , Textiles
6.
Genomics ; 112(2): 1384-1395, 2020 03.
Article in English | MEDLINE | ID: mdl-31415810

ABSTRACT

Differentiation of Wharton's Jelly-Mesenchymal Stem cells (WJ-MSCs) into cardiomyocytes (CMs) in vitro has been reported widely although contradictions remain regarding the maturation of differentiated MSCs into fully functioning CMs. Studies suggest that use of epigenetic modifiers like 5'Azacytidine (5-AC) in MSCs de-methylates DNA and results in expression of cardiac-specific genes (CSGs). However, only partial expression of the CSG set leads to incomplete differentiation of WJ-MSCs to CMs. We used the Agilent 180 K human DNA methylation microarray on WJ-MSCs, 5-AC treated WJ-MSCs and human cardiac tissue (hCT) to analyze differential DNA methylation profiles which were then validated by bisulfite sequencing PCR (BSP). BSP confirmed that only a limited number of CSGs were de-methylated by 5-AC in WJ-MSCs. It also revealed that hCT displays a methylation profile similar to promoter regions of CSG in untreated WJ-MSCs. Thus, the presence of hypo-methylated CSGs indicates that WJ-MSCs are ideal cell types for cardiomyogenic differentiation.


Subject(s)
Cell Differentiation , DNA Methylation , Epigenome , Mesenchymal Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Cells, Cultured , Fetal Blood/cytology , Humans , Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology
7.
J Cell Physiol ; 235(3): 2776-2791, 2020 03.
Article in English | MEDLINE | ID: mdl-31544977

ABSTRACT

Therapy-induced senescence in cancer cells is an irreversible antiproliferative state, which inhibits tumor growth and is therefore a potent anti-neoplastic mechanism. In this study, low doses of Abrus agglutinin (AGG)-induced senescence through autophagy in prostate carcinoma cells (PC3) and inhibited proliferation. The inhibition of autophagy with 3-methyl adenine reversed AGG-induced senescence, thus confirming that AGG-triggered senescence required autophagy. AGG treatment also led to lipophagy-mediated accumulation of free fatty acids (FFAs), with a concomitant decrease in the number of lipid droplets. Lalistat, a lysosomal acid lipase inhibitor, abrogated AGG-induced lipophagy and senescence in PC3 cells, indicating that lipophagy is essential for AGG-induced senescence. The accumulation of FFAs increased reactive oxygen species generation, a known facilitator of senescence, which was also reduced in the presence of lalistat. Furthermore, AGG upregulated silent mating type information regulator 2 homolog 1 (SIRT1), while the presence of sirtinol reduced autophagy flux and the senescent phenotype in the AGG-treated cells. Mechanistically, AGG-induced cytoplasmic SIRT1 deacetylated a Lys residue on the cytoplasmic domain of lysosome-associated membrane protein 1 (LAMP1), an autolysosomal protein, resulting in lipophagy and senescence. Taken together, our findings demonstrate a novel SIRT1/LAMP1/lipophagy axis mediating AGG-induced senescence in prostate cancer cells.


Subject(s)
Autophagy/drug effects , Cellular Senescence/drug effects , Fatty Acids, Nonesterified/biosynthesis , Lysosomal Membrane Proteins/metabolism , Plant Lectins/pharmacology , Prostatic Neoplasms/drug therapy , Adenine/analogs & derivatives , Adenine/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/physiology , Benzamides/pharmacology , Carbamates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/physiology , Humans , Male , Naphthols/pharmacology , PC-3 Cells , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Sterol Esterase/antagonists & inhibitors , Thiadiazoles/pharmacology , Up-Regulation/drug effects
8.
Cytotherapy ; 22(2): 91-105, 2020 02.
Article in English | MEDLINE | ID: mdl-31980369

ABSTRACT

AIM: Mesenchymal stem cells (MSCs) are immunomodulatory, non-teratogenic and multipotent alternatives to embryonic or induced pluripotent stem cells (ESCs or iPSCs). However, the potency of MSCs is not equivalent to the pluripotency of ESCs or iPSCs. We used CHIR 99021 to improve current protocols and methods of differentiation for the enhanced transdifferentiation potency of MSCs. MAIN METHODS: We used Flurescence activated cell sorter (FACS) for MSC immunophenotyping and biochemical assay for demonstrating the trilineage potential of MSCs. We used real-time polymerase chain reaction, immunocytochemistry and Western blotting assay for analyzing the expression of lineage-specific markers. KEY FINDINGS: CHIR 99021 treatment of MSCs resulted in enhanced transdifferentiation into neurological, hepatogenic and cardiomyocyte lineages with standardized protocols of differentiation. CHIR 99021-treated MSCs showed increased nuclear localization of ß-catenin. These MSCs showed a significantly increased deposition of active histone marks (H3K4Me3, H3K36Me3), whereas no change was observed in repressive marks (H3K9Me3, H3K27Me3). Differential methylation profiling showed demethylation of the transcription factor OCT4 promoter region with subsequent analysis revealing increased gene expression and protein content. The HLA-DR antigen was absent in CHIR 99021-treated MSCs and their differentiated cell types, indicating their immune-privileged status. Karyotyping analysis showed that CHIR 99021-treated MSCs were genomically stable. Teratoma analysis of nude mice injected with CHIR 99021-treated MSCs showed the increased presence of cell types of mesodermal origin at the site of injection. SIGNIFICANCE: MSCs pretreated with CHIR 99021 can be potent, abundant alternative sources of stem cells with enhanced differentiation capabilities that are well suited to cell-based regenerative therapy.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Octamer Transcription Factor-3/genetics , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Cell Differentiation , Cell- and Tissue-Based Therapy/methods , Humans , Immunophenotyping , Liver/cytology , Mesoderm/cytology , Mice , Mice, Nude , Myocardium/cytology , Myocytes, Cardiac/metabolism , Neurons/cytology , Regeneration , beta Catenin
9.
Expert Opin Drug Deliv ; : 1-22, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38809187

ABSTRACT

INTRODUCTION: Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings. AREAS COVERED: This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents. EXPERT OPINION: The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.

10.
ACS Appl Bio Mater ; 7(5): 2604-2619, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38622845

ABSTRACT

Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.


Subject(s)
Anti-Bacterial Agents , Biofilms , Carbon , Biofilms/drug effects , Carbon/chemistry , Carbon/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Prostheses and Implants , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Quantum Dots/chemistry , Particle Size , Microbial Sensitivity Tests , Materials Testing , Equipment and Supplies/microbiology
11.
ACS Omega ; 9(6): 6549-6555, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371810

ABSTRACT

Recently, the use of hybrid nanomaterials (NMs)/nanocomposites has widely increased for the health, energy, and environment sectors due to their improved physicochemical properties and reduced aggregation behavior. However, prior to their use in such sectors, it is mandatory to study their toxicological behavior in detail. In the present study, a ZnFe2O4@poly(tBGE-alt-PA) nanocomposite is tested to study its toxicological effects on a fruit fly model. This nanocomposite was synthesized earlier by our group and physicochemically characterized using different techniques. In this study, various neurological, developmental, genotoxic, and morphological tests were carried out to investigate the toxic effects of nanocomposite on Drosophila melanogaster. As a result, an abnormal crawling speed of third instar larvae and a change in the climbing behavior of treated flies were observed, suggesting a neurological disorder in the fruit flies. DAPI and DCFH-DA dyes analyzed the abnormalities in the larva's gut of fruit flies. Furthermore, the deformities were also seen in the wings and eyes of the treated flies. These obtained results suggested that the ZnFe2O4@poly(tBGE-alt-PA) nanocomposite is toxic to fruit flies. Moreover, this is essential to analyze the toxicity of this hybrid NM again in a rodent model in the future.

12.
Appl Biochem Biotechnol ; 196(1): 382-399, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37133677

ABSTRACT

Inorganic nanoparticles (NPs) have played an important role as nano-drug delivery systems during cancer therapy in recent years. These NPs can carry cancer therapeutic agents. Due to this, they are considered a promising ancillary to traditional cancer therapies. Among inorganic NPs, Zinc Oxide (ZnO) NPs have been extensively utilized in cellular imaging, gene/drug delivery, anti-microbial, and anti-cancerous applications. In this study, a rapid and cost-effective method was used to synthesize Nat-ZnO NPs using the floral extract of the Nyctanthes arbor-tristis (Nat) plant. Nat-ZnO NPs were physicochemically characterized and tested further on in vitro cancer models. The average hydrodynamic diameter (Zaverage) and the net surface charge of Nat-ZnO NPs were 372.5 ± 70.38 d.nm and -7.03 ± 0.55 mV, respectively. Nat-ZnO NPs exhibited a crystalline nature. HR-TEM analysis showed the triangular shape of NPs. Furthermore, Nat-ZnO NPs were also found to be biocompatible and hemocompatible when tested on mouse fibroblast cells and RBCs. Later, the anti-cancer activity of Nat-ZnO NPs was tested on lung and cervical cancer cells. These NPs displayed potent anti-cancer activity and induced programmed cell death in cancer cells.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Mice , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Flowers , Plant Extracts/pharmacology , Plant Extracts/chemistry
13.
Appl Biochem Biotechnol ; 196(2): 1008-1043, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37314636

ABSTRACT

Over the last few decades, the application of nanoparticles (NPs) gained immense attention towards environmental and biomedical applications. NPs are ultra-small particles having size ranges from 1 to 100 nm. NPs loaded with therapeutic or imaging compounds have proved a versatile approach towards healthcare improvements. Among various inorganic NPs, zinc ferrite (ZnFe2O4) NPs are considered as non-toxic and having an improved drug delivery characteristics . Several studies have reported broader applications of ZnFe2O4 NPs for treating carcinoma and various infectious diseases. Additionally, these NPs are beneficial for reducing organic and inorganic environmental pollutants. This review discusses about various methods to fabricate ZnFe2O4 NPs and their physicochemical properties. Further, their biomedical and environmental applications have also been explored comprehensively.


Subject(s)
Nanoparticles , Zinc , Nanoparticles/chemistry , Ferric Compounds/chemistry , Drug Delivery Systems
14.
Appl Biochem Biotechnol ; 196(2): 1058-1078, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37318689

ABSTRACT

Metal/Metal Oxide nanoparticles (M/MO NPs) exhibit potential biomedical applications due to their tunable physicochemical properties. Recently, the biogenic synthesis of M/MO NPs has gained massive attention due to their economical and eco-friendly nature. In the present study, Nyctanthes arbor-tristis (Nat) flower extract-derived Zinc Ferrite NPs (Nat-ZnFe2O4 NPs) were synthesized and physicochemically characterized by FTIR, XRD, FE-SEM, DLS, and other instruments to study their crystallinity, size, shape, net charge, presence of phytocompounds on NP's surface and several other features. The average particle size of Nat-ZnFe2O4 NPs was approx. 25.87 ± 5.67 nm. XRD results showed the crystalline nature of Nat-ZnFe2O4 NPs. The net surface charge on NPs was -13.28 ± 7.18 mV. When tested on mouse fibroblasts and human RBCs, these NPs were biocompatible and hemocompatible. Later, these Nat-ZnFe2O4 NPs exhibited potent anti-neoplastic activity against pancreatic, lung, and cervical cancer cells. In addition, NPs induced apoptosis in tested cancer cells through ROS generation. These in vitro studies confirmed that Nat-ZnFe2O4 NPs could be used for cancer therapy. Moreover, further studies are recommended on ex vivo platforms for future clinical applications.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Zinc Oxide , Animals , Mice , Humans , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Zinc , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oxides , Neoplasms/drug therapy , Anti-Bacterial Agents/pharmacology , Zinc Oxide/chemistry
15.
Appl Biochem Biotechnol ; 196(1): 491-505, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37145344

ABSTRACT

The current study reports the synthesis of sustainable nano-hydroxyapatite (nHAp) using a wet chemical precipitation approach. The materials used in the green synthesis of nHAp were obtained from environmental biowastes such as HAp from eggshells and pectin from banana peels. The physicochemical characterization of obtained nHAp was carried out using different techniques. For instance, X-ray diffractometer (XRD) and FTIR spectroscopy were used to study the crystallinity and synthesis of nHAp respectively. In addition, the morphology and elemental composition of nHAP were studied using FESEM equipped with EDX. HRTEM showed the internal structure of nHAP and calculated its grain size which was 64 nm. Furthermore, the prepared nHAp was explored for its antibacterial and antibiofilm activity which has received less attention previously. The obtained results showed the potential of pectin-bound nHAp as an antibacterial agent for various biomedical and healthcare applications.


Subject(s)
Durapatite , Pectins , Animals , Durapatite/chemistry , Pectins/pharmacology , Egg Shell , Anti-Bacterial Agents/pharmacology , Spectroscopy, Fourier Transform Infrared
16.
ACS Infect Dis ; 10(6): 1871-1889, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38829047

ABSTRACT

Leishmaniasis, one of the most overlooked tropical diseases, is a life-threatening illness caused by the parasite Leishmania donovani that is prevalent in underdeveloped nations. Over 350 million individuals in more than 90 different nations worldwide are at risk of contracting the disease, which has a current fatality rate of 50 000 mortalities each year. The administration of liposomal Amp B, pentavalent antimonials, and miltefosine are still considered integral components of the chemotherapy regimen. Antileishmanial medications fail to treat leishmaniasis because of their numerous drawbacks. These include inadequate effectiveness, toxicity, undesired side effects, drug resistance, treatment duration, and cost. Consequently, there is a need to overcome the limitations of conventional therapeutics. Nanotechnology has demonstrated promising outcomes in addressing these issues because of its small size and distinctive characteristics, such as enhanced bioavailability, lower toxicity, biodegradability, and targeted drug delivery. This review is an effort to highlight the recent progress in various nanodrug delivery systems (nDDSs) over the past five years for treating leishmaniasis. Although the preclinical outcomes of nDDSs have shown promising treatment for leishmaniasis, further research is needed for their clinical translation. Advancement in three primary priority domains─molecular diagnostics, clinical investigation, and knowledge dissemination and standardization─is imperative to propel the leishmaniasis field toward translational outcomes.


Subject(s)
Antiprotozoal Agents , Drug Delivery Systems , Leishmaniasis , Humans , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/therapeutic use , Leishmaniasis/drug therapy , Drug Delivery Systems/methods , Animals , Nanoparticles , Leishmania donovani/drug effects , Leishmaniasis Vaccines/administration & dosage , Nanovaccines
17.
Nanomedicine (Lond) ; 18(21): 1417-1419, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37655595

ABSTRACT

Lipid-based nanodrug delivery systems hold considerable promise in therapeutic intervention for leishmaniasis by enhancing drug solubility and targeted delivery.


Subject(s)
Leishmaniasis , Nanoparticles , Humans , Leishmaniasis/drug therapy , Drug Delivery Systems , Drug Carriers/therapeutic use , Lipids/therapeutic use , Nanoparticles/therapeutic use
18.
Nanomedicine (Lond) ; 18(22): 1515-1518, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37724503

ABSTRACT

Tweetable abstract Unveiling the power of polyester nanomedicines in revolutionizing visceral leishmaniasis treatment with enhanced drug loading and precise targeting.


Subject(s)
Drug Delivery Systems , Leishmaniasis, Visceral , Humans , Nanomedicine , Leishmaniasis, Visceral/drug therapy , Drug Carriers/therapeutic use
19.
Appl Biochem Biotechnol ; 195(10): 6168-6182, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36847986

ABSTRACT

The growing field of nanotechnology and its many applications have led to the irregular release of nanoparticles (NPs), with unintended effects on the environment and continued contamination of water bodies. Metallic NPs are used more frequently in extreme environmental conditions due to their higher efficiency, which attracts more attention in various applications. Due to improper pre-treatment of biosolids, inefficient wastewater treatment practices, and other unregulated agricultural practices continue to contaminate the environment. In particular, the uncontrolled use of NPs in various industrial applications has led to damage to the microbial flora and caused irreplaceable damage to animals and plants. This study focuses on the effect of different doses, types, and compositions of NP on the ecosystem. The review also mentions the impact of various metallic NPs on microbial ecology, their interactions with microorganisms, ecotoxicity studies, and dosage evaluation of the NPs, mainly focused on the review article. However, further research is still needed to understand the complexity of interactions between NPs and microbes in soil and aquatic ecosystems.


Subject(s)
Metal Nanoparticles , Nanoparticles , Soil Pollutants , Animals , Ecosystem , Metal Nanoparticles/toxicity , Soil , Agriculture
20.
Appl Biochem Biotechnol ; 195(5): 3508-3531, 2023 May.
Article in English | MEDLINE | ID: mdl-36877442

ABSTRACT

The sustainable development of human society in today's high-tech world depends on some form of eco-friendly energy source because existing technologies cannot keep up with the rapid population expansion and the vast amounts of wastewater that result from human activity. A green technology called a microbial fuel cell (MFC) focuses on using biodegradable trash as a substrate to harness the power of bacteria to produce bioenergy. Production of bioenergy and wastewater treatment are the two main uses of MFC. MFCs have also been used in biosensors, water desalination, polluted soil remediation, and the manufacture of chemicals like methane and formate. MFC-based biosensors have gained a lot of attention in the last few decades due to their straightforward operating principle and long-term viability, with a wide range of applications including bioenergy production, treatment of industrial and domestic wastewater, biological oxygen demand, toxicity detection, microbial activity detection, and air quality monitoring, etc. This review focuses on several MFC types and their functions, including the detection of microbial activity.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Humans , Bioelectric Energy Sources/microbiology , Wastewater , Biological Oxygen Demand Analysis , Water , Electricity , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL