Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Circ Res ; 133(1): 25-44, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37264926

ABSTRACT

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Atherosclerosis/metabolism , Inflammation , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
2.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162934

ABSTRACT

Calcium signaling plays important roles in physiological and pathological conditions, including cutaneous melanoma, the most lethal type of skin cancer. Intracellular calcium concentration ([Ca2+]i), cell membrane calcium channels, calcium related proteins (S100 family, E-cadherin, and calpain), and Wnt/Ca2+ pathways are related to melanogenesis and melanoma tumorigenesis and progression. Calcium signaling influences the melanoma microenvironment, including immune cells, extracellular matrix (ECM), the vascular network, and chemical and physical surroundings. Other ionic channels, such as sodium and potassium channels, are engaged in calcium-mediated pathways in melanoma. Calcium signaling serves as a promising pharmacological target in melanoma treatment, and its dysregulation might serve as a marker for melanoma prediction. We documented calcium-dependent endoplasmic reticulum (ER) stress and mitochondria dysfunction, by targeting calcium channels and influencing [Ca2+]i and calcium homeostasis, and attenuated drug resistance in melanoma management.


Subject(s)
Calcium Signaling , Drug Resistance, Neoplasm , Melanoma/metabolism , Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Humans , Tumor Microenvironment , Wnt Signaling Pathway
3.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36293021

ABSTRACT

The transformation of prostatic epithelial cells to prostate cancer (PCa) has been characterized as a transition from citrate secretion to citrate oxidation, from which one would anticipate enhanced mitochondrial complex I (CI) respiratory flux. Molecular mechanisms for this transformation are attributed to declining mitochondrial zinc concentrations. The unique metabolic properties of PCa cells have become a hot research area. Several publications have provided indirect evidence based on investigations using pre-clinical models, established cell lines, and fixed or frozen tissue bank samples. However, confirmatory respiratory analysis on fresh human tissue has been hampered by multiple difficulties. Thus, few mitochondrial respiratory assessments of freshly procured human PCa tissue have been published on this question. Our objective is to document relative mitochondrial CI and complex II (CII) convergent electron flow to the Q-junction and to identify electron transport system (ETS) alterations in fresh PCa tissue. The results document a CII succinate: quinone oxidoreductase (SQR) dominant succinate oxidative flux model in the fresh non-malignant prostate tissue, which is enhanced in malignant tissue. CI NADH: ubiquinone oxidoreductase activity is impaired rather than predominant in high-grade malignant fresh prostate tissue. Given these novel findings, succinate and CII are promising targets for treating and preventing PCa.


Subject(s)
Prostatic Neoplasms , Succinic Acid , Male , Humans , Succinic Acid/metabolism , Electron Transport Complex II/metabolism , Reactive Oxygen Species/metabolism , Ubiquinone/metabolism , NAD/metabolism , Electron Transport Complex I/metabolism , Electron Transport , Citrates , Zinc/metabolism
4.
Adv Exp Med Biol ; 982: 113-126, 2017.
Article in English | MEDLINE | ID: mdl-28551784

ABSTRACT

Provision for the continuous demand for energy from the beating heart relies heavily on efficient mitochondrial activity. Non-ischemic cardiomyopathy in which oxygen supply is not limiting results from etiologies such as pressure overload. It is associated with progressive development of metabolic stress culminating in energy depletion and heart failure. The mitochondria from the ventricular walls undergoing non-ischemic cardiomyopathy are subjected to long periods of adaptation to support the changing metabolic milieu, which has been described as mal-adaptation since it ultimately results in loss of cardiac contractile function. While the chronicity of exposure to metabolic stressors, co-morbidities and thereby adaptive changes in mitochondria maybe different between ischemic and non-ischemic heart failure, the resulting pathology is very similar, especially in late stage heart failure. Understanding of the mitochondrial changes in early-stage heart failure may guide the development of mitochondrial-targeted therapeutic options to prevent progression of non-ischemic heart failure. This chapter reviews findings of mitochondrial functional changes in animal models and humans with non-ischemic heart failure. While most animal models of non-ischemic heart failure exhibit cardiac mitochondrial dysfunction, studies in humans have been inconsistent despite confirmed reduction in ATP production. This chapter also reviews the possibility of impairment of substrate supply processes upstream of the mitochondria in heart failure, and discusses potential metabolism-targeted therapeutic options.


Subject(s)
Energy Metabolism , Heart Failure/metabolism , Mitochondria, Heart/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Animals , Cardiotonic Agents/therapeutic use , Disease Models, Animal , Energy Metabolism/drug effects , Heart Failure/etiology , Heart Failure/physiopathology , Humans , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Risk Factors
5.
Am J Physiol Heart Circ Physiol ; 310(6): H667-80, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26747502

ABSTRACT

Mitochondrial dysfunction has been implicated as a cause of energy deprivation in heart failure (HF). Herein, we tested individual and combined effects of two pathogenic factors of nonischemic HF, inhibition of nitric oxide synthesis [with l-N(G)-nitroarginine methyl ester (l-NAME)] and hypertension [with angiotensin II (AngII)], on myocardial mitochondrial function, oxidative stress, and metabolic gene expression. l-NAME and AngII were administered individually and in combination to mice for 5 wk. Although all treatments increased blood pressure and reduced cardiac contractile function, the l-NAME + AngII group was associated with the most severe HF, as characterized by edema, hypertrophy, oxidative stress, increased expression of Nppa and Nppb, and decreased expression of Atp2a2 and Camk2b. l-NAME + AngII-treated mice exhibited robust deterioration of cardiac mitochondrial function, as observed by reduced respiratory control ratios in subsarcolemmal mitochondria and reduced state 3 levels in interfibrillar mitochondria for complex I but not for complex II substrates. Cardiac myofibrils showed reduced ADP-supported and oligomycin-inhibited oxygen consumption. Mitochondrial functional impairment was accompanied by reduced mitochondrial DNA content and activities of pyruvate dehydrogenase and complex I but increased H2O2 production and tissue protein carbonyls in hearts from AngII and l-NAME + AngII groups. Microarray analyses revealed the majority of the gene changes attributed to the l-NAME + AngII group. Pathway analyses indicated significant changes in metabolic pathways, such as oxidative phosphorylation, mitochondrial function, cardiac hypertrophy, and fatty acid metabolism in l-NAME + AngII hearts. We conclude that l-NAME + AngII is associated with impaired mitochondrial respiratory function and increased oxidative stress compared with either l-NAME or AngII alone, resulting in nonischemic HF.


Subject(s)
Angiotensin II/pharmacology , Enzyme Inhibitors/pharmacology , Heart Failure/etiology , Mitochondria, Heart/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Vasoconstrictor Agents/pharmacology , Animals , Atrial Natriuretic Factor , Calcium-Calmodulin-Dependent Protein Kinase Type 2/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cardiomegaly , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Electron Transport Complex I/drug effects , Electron Transport Complex I/metabolism , Electron Transport Complex II/drug effects , Electron Transport Complex II/metabolism , Gene Expression/drug effects , Heart/drug effects , Hydrogen Peroxide/metabolism , Mice , Mitochondria, Heart/metabolism , Myocardium/metabolism , Myocardium/pathology , Natriuretic Peptide, Brain/drug effects , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, C-Type/drug effects , Natriuretic Peptide, C-Type/genetics , Protein Precursors/drug effects , Protein Precursors/genetics , Pyruvate Dehydrogenase Complex/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sarcoplasmic Reticulum Calcium-Transporting ATPases/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
6.
J Card Fail ; 22(1): 73-81, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26370778

ABSTRACT

OBJECTIVES: Right ventricular failure is the primary reason for mortality in pulmonary hypertension (PH), but little is understood about the energetics of the failing right myocardium. Our aim was to examine mitochondrial function and proteomic signatures in paired remodeled right (RM-RV) and non-remodeled left (NRM-LV) ventricular tissue samples procured during heart-lung transplantation. METHODS AND RESULTS: Contractile dysfunction in RM-RV and preserved contractile function in NRM-LV were determined clinically and by echocardiography. Mitochondria were isolated from fresh paired RV and LV wall specimens of explanted hearts. Respiratory states in response to 4 substrates and an uncoupler were analyzed. Proteomic analysis on the mitochondrial isolates was performed with the use of liquid chromatography-mass spectrometry. The RM-RV mitochondria exhibited higher succinate state 4 levels with lower respiratory control ratio (RCR) compared with state 4 levels for pyruvate-malate (PM) and glutamate-malate (GM). RM-RV mitochondria also exhibited lower state 3 for palmitoyl-carnitine (PC) and state 4 for all complex I substrates compared with NRM-LV. The mean RCR were greater in RM-RVs than in NRM-LVs for PM and GM, which is consistent with tight coupling (low state 4 rates, higher RCRs); however, low RM-RV state 3 rates suggest concurrent substrate-dependent impairment in respiratory capacity. Mitochondrial proteomics revealed greater levels of mitochondrial ADP-ATP translocase and proteins of ATP synthesis, mitochondrial pyruvate and short branched chain acyl-CoA metabolism in RM-RV. CONCLUSIONS: The mitochondrial respiration and proteomics in RM-RV are different from NRM-LV. These results have important implications in expanding our understanding of RV metabolism and future management of RV failure.


Subject(s)
Heart Failure/physiopathology , Heart Ventricles/physiopathology , Hypertension, Pulmonary/complications , Mitochondria, Heart/metabolism , Ventricular Dysfunction, Right/physiopathology , Ventricular Remodeling , Adolescent , Aged , Echocardiography , Electron Transport Complex I/metabolism , Female , Heart Failure/etiology , Humans , Middle Aged , Mitochondria, Heart/enzymology , Mitochondrial ADP, ATP Translocases/metabolism , Proteomics , Ventricular Dysfunction, Right/etiology
7.
Muscle Nerve ; 51(4): 562-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24956997

ABSTRACT

INTRODUCTION: α7ß1 integrin links the extracellular matrix to the focal adhesion (FA) in skeletal muscle and serves as a stabilizing and signal relayer. Heat shock (HS) induces expression of proteins that interact with the FA. METHODS: Male Wistar rats were assigned to 1 of 3 groups: control (CON); eccentric exercise (EE); or EE+HS (HS). Soleus muscle was analyzed at 2 h and 48 h post-exercise. RESULTS: The 120-kDa α7 integrin decreased in the EE and HS groups, and the 70-kDa peptide decreased in the EE group at 2 h post-exercise. Total expression of focal adhesion kinase (FAK) and RhoA were decreased in EE and HS at 2 h post-exercise. Expression of phosphorylated FAK(397) decreased in the EE group but not the HS group at 2 h post-exercise. CONCLUSIONS: Long-duration EE may cause alterations in the FA in rat soleus muscle through the α7 integrin subunit and FAK.


Subject(s)
Heat-Shock Response , Integrins/metabolism , Muscle, Skeletal/metabolism , Signal Transduction/physiology , Animals , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Hot Temperature , Male , Models, Animal , Movement/physiology , Phosphorylation , Physical Conditioning, Animal , Rats, Wistar
8.
J Mol Cell Cardiol ; 68: 98-105, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412531

ABSTRACT

In heart failure mitochondrial dysfunction is thought to be responsible for energy depletion and contractile dysfunction. The difficulties in procuring fresh left ventricular (LV) myocardium from humans for assessment of mitochondrial function have resulted in the reliance on surrogate markers of mitochondrial function and limited our understanding of cardiac energetics. We isolated mitochondria from fresh LV wall tissue of patients with heart failure and reduced systolic function undergoing heart transplant or left ventricular assist device placement, and compared their function to mitochondria isolated from the non-failing LV (NFLV) wall tissue with normal systolic function from patients with pulmonary hypertension undergoing heart-lung transplant. We performed detailed mitochondrial functional analyses using 4 substrates: glutamate-malate (GM), pyruvate-malate (PM) palmitoyl carnitine-malate (PC) and succinate. NFLV mitochondria showed preserved respiratory control ratios and electron chain integrity with only few differences for the 4 substrates. In contrast, HF mitochondria had greater respiration with GM, PM and PC substrates and higher electron chain capacity for PM than for PC. Surprisingly, HF mitochondria had greater respiratory control ratios and lower ADP-independent state 4 rates than NFLV mitochondria for GM, PM and PC substrates demonstrating that HF mitochondria are capable of coupled respiration ex vivo. Gene expression studies revealed decreased expression of key genes in pathways for oxidation of both fatty acids and glucose. Our results suggest that mitochondria from the failing LV myocardium are capable of tightly coupled respiration when isolated and supplied with ample substrates. Thus energy starvation in the failing heart may be the result of dysregulation of metabolic pathways, impaired substrate supply or reduced mitochondrial number but not the result of reduced mitochondrial electron transport capacity.


Subject(s)
Heart Failure/metabolism , Mitochondria, Heart/metabolism , Adult , CD36 Antigens/genetics , CD36 Antigens/metabolism , Case-Control Studies , Cell Respiration , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Female , Heart Failure/pathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Humans , Male , Middle Aged , Oxidation-Reduction , Oxygen/metabolism , Transcriptome , Young Adult
9.
Curr Diab Rep ; 13(3): 362-71, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23475581

ABSTRACT

Tissue oxidative stress is a common hallmark of atherosclerosis and non-alcoholic steatohepatitis (NASH), 2 conditions linked epidemiologically and pathophysiologically. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the master regulator of inducible antioxidant responses, that can attenuate cellular injury from oxidative stress induced by obesity and other redox insults. Nrf2 expression and activation is reduced in mouse and human vessels that harbor accelerated atherosclerosis and in livers with histologic criteria of NASH. Systemic antioxidants have thus been attractive therapeutic targets, but clinical trials have been largely unsuccessful in improving cardiovascular health. Macrophage-selective Nrf2 activation may, however, provide an approach to reduce vascular and hepatocyte injury without the complications of systemic antioxidants, since macrophages play key roles in the development and progression of both atherosclerosis and NASH. In this article, we review the common mechanisms of oxidative stress and inflammation in atherosclerosis and NASH, and discuss the role of Nrf2 in vascular and hepatocyte protection.


Subject(s)
Antioxidants/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , NF-E2-Related Factor 2/metabolism , Protective Agents/therapeutic use , Animals , Humans , Non-alcoholic Fatty Liver Disease , Oxidative Stress/drug effects , Protective Agents/pharmacology
10.
Arterioscler Thromb Vasc Biol ; 32(12): 2839-46, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23023374

ABSTRACT

OBJECTIVE: To determine the impact of hematopoietic deletion of nuclear factor- (erythroid-derived 2) like 2 factor (Nrf2) on the development of atherosclerosis and liver injury in an obese, hypercholesterolemic mouse model. METHODS AND RESULTS: Two-month-old male low-density lipoprotein receptor-deficient mice were lethally irradiated and transplanted with either wild type or Nrf2-deficient (Nrf2(-/-)) bone marrow cells. At 3 months of age, mice were placed on an obesogenic high-fat diet (HFD), high-cholesterol diet for 7 months. Despite no differences in body weight, body fat percentage, liver fat, plasma glucose, lipids, or insulin, the HFD-fed Nrf2(-/-) bone marrow recipients had increased proinflammatory vascular gene expression, a significant increase in atherosclerosis area (18% versus 28%; P=0.018) and lesion complexity, and a marked increase in liver fibrosis. The acceleration of vascular and liver injury may arise from enhanced macrophage migration, inflammation, and oxidative stress resulting from myeloid Nrf2 deficiency. CONCLUSIONS: Myeloid-derived Nrf2 activity attenuates atherosclerosis development and liver inflammation and fibrosis associated with obesity. Prevention of oxidative stress in macrophage and other myeloid lineage cells may be an important therapeutic target to reduce inflammation-driven complications of obesity.


Subject(s)
Atherosclerosis/epidemiology , Gene Deletion , Hypercholesterolemia/complications , Liver Cirrhosis/epidemiology , Myeloid Cells/metabolism , NF-E2-Related Factor 2/deficiency , Obesity/complications , Animals , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Bone Marrow Transplantation , Cell Movement/physiology , Comorbidity , Disease Models, Animal , Hypercholesterolemia/epidemiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/physiopathology , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Obesity/epidemiology , Oxidative Stress/physiology , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, LDL/metabolism , Risk Factors
11.
J Biol Chem ; 286(35): 30723-30731, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21719705

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) activation induces adipogenesis and also enhances lipogenesis, mitochondrial activity, and insulin sensitivity in adipocytes. Whereas some studies implicate PPARγ coactivator 1α (PGC-1α) in the mitochondrial effect, the mechanisms involved in PPARγ regulation of adipocyte mitochondrial function are not resolved. PPARγ-activating ligands (thiazolidinediones (TZDs)) are important insulin sensitizers and were recently shown to indirectly induce PGC-1ß transcription in osteoclasts. Here, we asked whether similar effects occur in adipocytes and show that TZDs also strongly induce PGC-1ß in cultured 3T3-L1 cells. This effect, however, differs from the indirect effect proposed for bone and is rapid and direct and involves PPARγ interactions with an intronic PPARγ response element cluster in the PGC-1ß locus. TZD treatment of cultured adipocytes results in up-regulation of mitochondrial marker genes, and increased mitochondrial activity and use of short interfering RNA confirms that these effects require PGC-1ß. PGC-1ß did not participate in PPARγ effects on adipogenesis or lipogenesis, and PGC-1ß knockdown did not alter insulin-responsive glucose uptake into 3T3-L1 cells. Similar effects on PGC-1ß and mitochondrial gene expression are seen in vivo; fractionation of obese mouse adipose tissue reveals that PPARγ and PGC-1ß, but not PGC-1α, are coordinately up-regulated in adipocytes relative to preadipocytes and that TZD treatment induces PGC-1ß and mitochondrial marker genes in adipose tissue of obese mice. We propose that PPARγ directly induces PGC-1ß expression in adipocytes and that this effect regulates adipocyte mitochondrial activity.


Subject(s)
Adipocytes/cytology , PPAR gamma/metabolism , Trans-Activators/metabolism , 3T3-L1 Cells , Adipose Tissue/metabolism , Animals , Fatty Acids/metabolism , HEK293 Cells , Humans , Mice , Mice, Obese , Mitochondria/metabolism , Models, Biological , Oxygen Consumption , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Thiazolidinediones/pharmacology , Transcription Factors
12.
Cells ; 11(22)2022 11 17.
Article in English | MEDLINE | ID: mdl-36429071

ABSTRACT

Accumulating evidence indicates that the APOA1 binding protein (AIBP)-a secreted protein-plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter. We investigated its role in NAD(P)H-involved metabolism in murine cardiomyocytes, focusing on the metabolism of hexose, lipids, and amino acids as well as mitochondrial redox function. Unbiased metabolite profiling of cardiac tissue shows that NAXE knockout markedly upregulates the ketone body 3-hydroxybutyric acid (3-HB) and increases or trends increasing lipid-associated metabolites cholesterol, α-linolenic acid and deoxycholic acid. Paralleling greater ketone levels, ChemRICH analysis of the NAXE-regulated metabolites shows reduced abundance of hexose despite similar glucose levels in control and NAXE-deficient blood. NAXE knockout reduces cardiac lactic acid but has no effect on the content of other NAD(P)H-regulated metabolites, including those associated with glucose metabolism, the pentose phosphate pathway, or Krebs cycle flux. Although NAXE is present in mitochondria, it has no apparent effect on mitochondrial oxidative phosphorylation. Instead, we detected more metabolites that can potentially improve cardiac function (3-HB, adenosine, and α-linolenic acid) in the Naxe-/- heart; these mice also perform better in aerobic exercise. Our data reveal a new role of NAXE in cardiac ketone and lipid metabolism.


Subject(s)
Ketones , NAD , Animals , Mice , alpha-Linolenic Acid , NAD/metabolism , Racemases and Epimerases , Cell Respiration
13.
Hepatology ; 52(6): 2001-11, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20938947

ABSTRACT

UNLABELLED: Nonalcoholic fatty liver disease (NAFLD) is a common complication of obesity that can progress to nonalcoholic steatohepatitis (NASH), a serious liver pathology that can advance to cirrhosis. The mechanisms responsible for NAFLD progression to NASH remain unclear. Lack of a suitable animal model that faithfully recapitulates the pathophysiology of human NASH is a major obstacle in delineating mechanisms responsible for progression of NAFLD to NASH and, thus, development of better treatment strategies. We identified and characterized a novel mouse model, middle-aged male low-density lipoprotein receptor (LDLR)(-/-) mice fed a high-fat diet (HFD), which developed NASH associated with four of five metabolic syndrome (MS) components. In these mice, as observed in humans, liver steatosis and oxidative stress promoted NASH development. Aging exacerbated the HFD-induced NASH such that liver steatosis, inflammation, fibrosis, oxidative stress, and liver injury markers were greatly enhanced in middle-aged versus young LDLR(-/-) mice. Although expression of genes mediating fatty acid oxidation and antioxidant responses were up-regulated in young LDLR(-/-) mice fed HFD, they were drastically reduced in MS mice. However, similar to recent human trials, NASH was partially attenuated by an insulin-sensitizing peroxisome proliferator-activated receptor-gamma (PPARγ) ligand, rosiglitazone. In addition to expected improvements in MS, newly identified mechanisms of PPARγ ligand effects included stimulation of antioxidant gene expression and mitochondrial ß-oxidation, and suppression of inflammation and fibrosis. LDLR-deficiency promoted NASH, because middle-aged C57BL/6 mice fed HFD did not develop severe inflammation and fibrosis, despite increased steatosis. CONCLUSION: MS mice represent an ideal model to investigate NASH in the context of MS, as commonly occurs in human disease, and NASH development can be substantially attenuated by PPARγ activation, which enhances ß-oxidation.


Subject(s)
Fatty Liver/prevention & control , Receptors, LDL/deficiency , Thiazolidinediones/therapeutic use , Aging/physiology , Animals , Antioxidants/metabolism , Dietary Fats/adverse effects , Fatty Liver/genetics , Gene Expression , Hepatitis/etiology , Liver/drug effects , Liver/metabolism , Male , Metabolic Syndrome , Mice , Mice, Knockout , Mitochondria, Liver/physiology , Oxidative Stress , PPAR gamma/metabolism , Rosiglitazone
14.
Exerc Sport Sci Rev ; 39(1): 34-42, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21088604

ABSTRACT

Endogenous heat shock proteins (HSP) are decreased in disease states associated with insulin resistance and aging. Induction of HSPs has been shown to decrease oxidative stress, inhibit inflammatory pathways, and enhance metabolic characteristics in skeletal muscle. As such, HSPs have the potential to function as an important defense system against the development of insulin resistance and type 2 diabetes.


Subject(s)
Heat-Shock Proteins/metabolism , Insulin Resistance , Muscle, Skeletal/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/prevention & control , Hot Temperature , Humans , Insulin/metabolism , Oxidative Stress
16.
Pharmaceutics ; 13(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066184

ABSTRACT

Melanoma is one of the most malignant skin cancers that require comprehensive therapies, including chemotherapy. A plant-derived drug, plumbagin (PLB), exhibits an anticancer property in several cancers. We compared the cytotoxic and metabolic roles of PLB in A375 and SK-MEL-28 cells, each with different aggressiveness. In our results, they were observed to have distinctive mitochondrial respiratory functions. The primary reactive oxygen species (ROS) source of A375 can be robustly attenuated by cell membrane permeabilization. A375 cell viability and proliferation, migration, and apoptosis induction are more sensitive to PLB treatment. PLB induced metabolic alternations in SK-MEL-28 cells, which included increasing mitochondrial oxidative phosphorylation (OXPHOS), mitochondrial ATP production, and mitochondrial mass. Decreasing mitochondrial OXPHOS and total ATP production with elevated mitochondrial membrane potential (MMP) were observed in PLB-induced A375 cells. PLB also induced ROS production and increased proton leak and non-mitochondria respiration in both cells. This study reveals the relationship between metabolism and cytotoxic effects of PLB in melanoma. PLB displays stronger cytotoxic effects on A375 cells, which exhibit lower respiratory function than SK-MEL-28 cells with higher respiratory function, and triggers cell-specific metabolic changes in accordance with its cytotoxic effects. These findings indicate that PLB might serve as a promising anticancer drug, targeting metabolism.

17.
Redox Biol ; 47: 102132, 2021 11.
Article in English | MEDLINE | ID: mdl-34619528

ABSTRACT

The incidence of cardiovascular disease (CVD) is higher in cancer survivors than in the general population. Several cancer treatments are recognized as risk factors for CVD, but specific therapies are unavailable. Many cancer treatments activate shared signaling events, which reprogram myeloid cells (MCs) towards persistent senescence-associated secretory phenotype (SASP) and consequently CVD, but the exact mechanisms remain unclear. This study aimed to provide mechanistic insights and potential treatments by investigating how chemo-radiation can induce persistent SASP. We generated ERK5 S496A knock-in mice and determined SASP in myeloid cells (MCs) by evaluating their efferocytotic ability, antioxidation-related molecule expression, telomere length, and inflammatory gene expression. Candidate SASP inducers were identified by high-throughput screening, using the ERK5 transcriptional activity reporter cell system. Various chemotherapy agents and ionizing radiation (IR) up-regulated p90RSK-mediated ERK5 S496 phosphorylation. Doxorubicin and IR caused metabolic changes with nicotinamide adenine dinucleotide depletion and ensuing mitochondrial stunning (reversible mitochondria dysfunction without showing any cell death under ATP depletion) via p90RSK-ERK5 modulation and poly (ADP-ribose) polymerase (PARP) activation, which formed a nucleus-mitochondria positive feedback loop. This feedback loop reprogramed MCs to induce a sustained SASP state, and ultimately primed MCs to be more sensitive to reactive oxygen species. This priming was also detected in circulating monocytes from cancer patients after IR. When PARP activity was transiently inhibited at the time of IR, mitochondrial stunning, priming, macrophage infiltration, and coronary atherosclerosis were all eradicated. The p90RSK-ERK5 module plays a crucial role in SASP-mediated mitochondrial stunning via regulating PARP activation. Our data show for the first time that the nucleus-mitochondria positive feedback loop formed by p90RSK-ERK5 S496 phosphorylation-mediated PARP activation plays a crucial role of persistent SASP state, and also provide preclinical evidence supporting that transient inhibition of PARP activation only at the time of radiation therapy can prevent future CVD in cancer survivors.


Subject(s)
Coronary Artery Disease , Mitogen-Activated Protein Kinase 7 , Poly(ADP-ribose) Polymerases , Adenosine Diphosphate/metabolism , Animals , Coronary Artery Disease/metabolism , Feedback , Humans , Mice , Mitochondria/metabolism , Phenotype , Phosphorylation , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Ribose/metabolism
18.
J Appl Physiol (1985) ; 106(4): 1425-34, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19179648

ABSTRACT

The antioxidant alpha-lipoic acid (LA) has been shown to improve insulin action in high-fat (HF)-fed animal models, yet little is known about its underlying mechanisms of action. We hypothesize that LA acts by inducing heat shock proteins (HSPs), which then inhibit stress kinases known to interfere with insulin signaling intermediates. Male Wistar rats were fed a HF diet (60% calories from fat) for 6 wk, while controls received a chow diet (10% calories from fat). One-half of the rats in each group received daily LA injections (30 mg/kg body wt). In rats fed a HF diet, LA increased expression of HSP72 and activation of HSP25 in soleus muscle, but it had no effect on HSPs in muscle from chow-fed rats. LA treatment reduced phosphorylation of c-Jun NH(2)-terminal kinase (JNK) and inhibitor of kappaB kinase-beta (IKKbeta) activity (IkappaBalpha protein levels) in rats fed a HF diet and effectively restored insulin responsiveness, as seen by insulin-stimulated phosphorylated Akt/Akt and 2-deoxyglucose uptake in soleus muscle. LA also induced activation of p38 MAPK and AMP-activated protein kinase, proteins previously implicated in insulin-independent glucose uptake. In addition, acute LA treatment induced HSPs in vitro in L6 muscle cells and prevented the activation of JNK and IKKbeta with stimulants such as anisomycin and TNF-alpha, respectively. In conclusion, our results suggest chronic LA treatment results in stress kinase inhibition and improved insulin signaling through a HSP-mediated mechanism.


Subject(s)
Antioxidants/pharmacology , Dietary Fats/pharmacology , Heat-Shock Proteins/biosynthesis , Insulin/physiology , MAP Kinase Signaling System/drug effects , Muscle, Skeletal/physiology , Signal Transduction/drug effects , Thioctic Acid/pharmacology , AMP-Activated Protein Kinase Kinases , Animals , Blotting, Western , Body Weight/drug effects , Cells, Cultured , Enzyme Inhibitors/pharmacology , Glucose/metabolism , I-kappa B Kinase/biosynthesis , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Protein Kinases/metabolism , Rats , Rats, Wistar , Stimulation, Chemical , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Cell Metab ; 30(1): 143-156.e5, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31031094

ABSTRACT

Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cholesterol/blood , Tumor Microenvironment/physiology , Animals , Blotting, Western , Flow Cytometry , Humans , Immunoprecipitation , Immunotherapy , Melanoma, Experimental/blood , Mice , Programmed Cell Death 1 Receptor/metabolism , Real-Time Polymerase Chain Reaction
20.
J Appl Physiol (1985) ; 105(3): 839-48, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18599680

ABSTRACT

Aging is associated with an increase in insulin resistance in skeletal muscle, yet the underlying mechanism is not well established. We hypothesize that with aging, a chronic increase in stress kinase activation, coupled with a decrease in oxidative capacity, leads to insulin resistance in skeletal muscle. In aged (24 mo old) and young (3 mo old) Fischer 344 rats, 2-deoxyglucose uptake and insulin signaling [as measured by phosphorylation of insulin receptor substrate-1 (IRS-1), Akt (protein kinase B), and Akt substrate of 160 kDa (AS160)] decreased significantly with age. Activation of, c-Jun NH(2)-terminal kinase (JNK), glycogen serine kinase-3beta (GSK-3beta), and degradation of IkappaBalpha by the upstream inhibitor of kappa B kinase (IKKbeta), as measured by Western blot analysis, were increased with age in both soleus and epitrochlearis (Epi) muscles. However, much higher activation of these kinases in Epi muscles from young rats compared with soleus results in a greater effect of these kinases on insulin signaling in fast-twitch muscle with age. Heat shock protein (HSP) 72 expression and phosphorylation of HSP25 were higher in soleus compared with Epi muscles, and both parameters decreased with age. Age and fiber type differences in cytochrome oxidase activity are consistent with observed changes in HSP expression and activation. Our results demonstrate a significant difference in the ability of slow-twitch and fast-twitch muscles to respond to insulin and regulate glucose with age. A greater constitutive HSP expression and lower stress kinase activation may account for the ability of slow-twitch muscles to preserve the capacity to respond to insulin and maintain glucose homeostasis with age.


Subject(s)
Aging/metabolism , Heat-Shock Proteins/metabolism , Insulin/metabolism , Muscle Fibers, Fast-Twitch/enzymology , Muscle Fibers, Slow-Twitch/enzymology , Muscle, Skeletal/enzymology , Protein Kinases/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Age Factors , Animals , Deoxyglucose/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , HSP27 Heat-Shock Proteins , HSP72 Heat-Shock Proteins/metabolism , Homeostasis , I-kappa B Kinase/metabolism , I-kappa B Proteins/metabolism , Insulin Receptor Substrate Proteins , Insulin Resistance , JNK Mitogen-Activated Protein Kinases/metabolism , Male , NF-KappaB Inhibitor alpha , Neoplasm Proteins/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL