Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Cell Sci ; 136(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37815466

ABSTRACT

Connections between the nucleus and the cytoskeleton are important for positioning and division of the nucleus. In most eukaryotes, the linker of nucleoskeleton and cytoskeleton (LINC) complex spans the outer and inner nuclear membranes and connects the nucleus to the cytoskeleton. In opisthokonts, it is composed of Klarsicht, ANC-1 and Syne homology (KASH) domain proteins and Sad1 and UNC-84 (SUN) domain proteins. Given that the nucleus is positioned at the posterior pole of Toxoplasma gondii, we speculated that apicomplexan parasites must have a similar mechanism that integrates the nucleus and the cytoskeleton. Here, we identified three UNC family proteins in the genome of the apicomplexan parasite T. gondii. Whereas the UNC-50 protein TgUNC1 localised to the Golgi and appeared to be not essential for the parasite, the SUN domain protein TgSLP2 showed a diffuse pattern throughout the parasite. The second SUN domain protein, TgSLP1, was expressed in a cell cycle-dependent manner and was localised close to the mitotic spindle and, more detailed, at the kinetochore. We demonstrate that conditional knockout of TgSLP1 leads to failure of nuclear division and loss of centrocone integrity.


Subject(s)
Parasites , Toxoplasma , Animals , Toxoplasma/genetics , Nuclear Envelope/metabolism , Spindle Apparatus , Cell Nucleus Division
2.
BMC Genomics ; 25(1): 124, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287279

ABSTRACT

BACKGROUND: Single-cell transcriptomics provides means to study cell populations at the level of individual cells. In leukocyte biology this approach could potentially aid the identification of subpopulations and functions without the need to develop species-specific reagents. The present study aimed to evaluate single-cell RNA-seq as a tool for identification of chicken peripheral blood leukocytes. For this purpose, purified and thrombocyte depleted leukocytes from 4 clinically healthy hens were subjected to single-cell 3' RNA-seq. Bioinformatic analysis of data comprised unsupervised clustering of the cells, and annotation of clusters based on expression profiles. Immunofluorescence phenotyping of the cell preparations used was also performed. RESULTS: Computational analysis identified 31 initial cell clusters and based on expression of defined marker genes 28 cluster were identified as comprising mainly B-cells, T-cells, monocytes, thrombocytes and red blood cells. Of the remaining clusters, two were putatively identified as basophils and eosinophils, and one as proliferating cells of mixed origin. In depth analysis on gene expression profiles within and between the initial cell clusters allowed further identification of cell identity and possible functions for some of them. For example, analysis of the group of monocyte clusters revealed subclusters comprising heterophils, as well as putative monocyte subtypes. Also, novel aspects of TCRγ/δ + T-cell subpopulations could be inferred such as evidence of at least two subtypes based on e.g., different expression of transcription factors MAF, SOX13 and GATA3. Moreover, a novel subpopulation of chicken peripheral B-cells with high SOX5 expression was identified. An overall good correlation between mRNA and cell surface phenotypic cell identification was shown. CONCLUSIONS: Taken together, we were able to identify and infer functional aspects of both previously well known as well as novel chicken leukocyte populations although some cell types. e.g., T-cell subtypes, proved more challenging to decipher. Although this methodology to some extent is limited by incomplete annotation of the chicken genome, it definitively has benefits in chicken immunology by expanding the options to distinguish identity and functions of immune cells also without access to species specific reagents.


Subject(s)
Chickens , Single-Cell Gene Expression Analysis , Animals , Female , Chickens/genetics , Leukocytes/metabolism , Monocytes , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods
3.
PLoS Biol ; 19(4): e3001057, 2021 04.
Article in English | MEDLINE | ID: mdl-33901176

ABSTRACT

Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral diseases. An iconic example is Marek's disease, caused by an oncogenic herpesvirus with over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to T lymphocytes, and it has been hard to understand how such MHC molecules could be involved in susceptibility to Marek's disease, given the potential number of peptides from over 100 genes. We used a new in vitro infection system and immunopeptidomics to determine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which is known to confer resistance to Marek's disease. Surprisingly, we found that the vast majority of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II molecule in chickens. We expressed BL2*02 linked to several Marek's disease virus (MDV) peptides and determined one X-ray crystal structure, showing how a single small amino acid in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10 amino acids, compared to the 9 amino acids in all other reported class II molecules. The limited number of potential T cell epitopes from such a complex virus can explain the differential MHC-determined resistance to MDV, but raises questions of mechanism and opportunities for vaccine targets in this important food species, as well as providing a basis for understanding class II molecules in other species including humans.


Subject(s)
Chickens/immunology , Herpesvirus 2, Gallid/immunology , Histocompatibility Antigens Class II , Marek Disease/immunology , Animals , Antigen Presentation/genetics , Antigen Presentation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bursa of Fabricius/immunology , Cells, Cultured , Chickens/genetics , Chickens/virology , Disease Resistance/genetics , Disease Resistance/immunology , Haplotypes , Herpesvirus 2, Gallid/chemistry , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Immunodominant Epitopes/metabolism , Marek Disease/genetics , Marek Disease/virology , Models, Molecular , Peptides/chemistry , Peptides/genetics , Peptides/immunology , Poultry Diseases/immunology , Poultry Diseases/virology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology
4.
J Immunol ; 208(5): 1128-1138, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35173035

ABSTRACT

Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.


Subject(s)
Chickens/genetics , Chickens/immunology , Forkhead Transcription Factors/genetics , T-Lymphocytes, Regulatory/immunology , Amino Acid Sequence/genetics , Animals , Base Sequence , Cell Differentiation/immunology , Gene Expression Profiling , Genome/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphocyte Activation/immunology , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology
5.
PLoS Pathog ; 17(10): e1010006, 2021 10.
Article in English | MEDLINE | ID: mdl-34673841

ABSTRACT

Marek's disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.


Subject(s)
B-Lymphocytes/virology , Marek Disease , Animals , Cellular Senescence/physiology , Chickens , Mardivirus , Phenotype
6.
Genet Sel Evol ; 53(1): 44, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33957861

ABSTRACT

BACKGROUND: In all organisms, life-history traits are constrained by trade-offs, which may represent physiological limitations or be related to energy resource management. To detect trade-offs within a population, one promising approach is the use of artificial selection, because intensive selection on one trait can induce unplanned changes in others. In chickens, the breeding industry has achieved remarkable genetic progress in production and feed efficiency over the last 60 years. However, this may have been accomplished at the expense of other important biological functions, such as immunity. In the present study, we used three experimental lines of layer chicken-two that have been divergently selected for feed efficiency and one that has been selected for increased antibody response to inactivated Newcastle disease virus (ND3)-to explore the impact of improved feed efficiency on animals' immunocompetence and, vice versa, the impact of improved antibody response on animals' growth and feed efficiency. RESULTS: There were detectable differences between the low (R+) and high (R-) feed-efficiency lines with respect to vaccine-specific antibody responses and counts of monocytes, heterophils, and/or T cell population. The ND3 line presented reduced body weight and feed intake compared to the control line. ND3 chickens also demonstrated an improved antibody response against a set of commercial viral vaccines, but lower blood leucocyte counts. CONCLUSIONS: This study demonstrates the value of using experimental chicken lines that are divergently selected for RFI or for a high antibody production, to investigate the modulation of immune parameters in relation to growth and feed efficiency. Our results provide further evidence that long-term selection for the improvement of one trait may have consequences on other important biological functions. Hence, strategies to ensure optimal trade-offs among competing functions will ultimately be required in multi-trait selection programs in livestock.


Subject(s)
Animal Nutritional Physiological Phenomena/genetics , Chickens/genetics , Poultry Diseases/genetics , Selective Breeding , Animals , Body Weight , Chickens/growth & development , Chickens/immunology , Life History Traits , Poultry Diseases/immunology
7.
Proc Natl Acad Sci U S A ; 115(45): 11603-11607, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30337483

ABSTRACT

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes immunosuppression, paralysis, and deadly lymphomas in chickens. In infected animals, B cells are efficiently infected and are thought to amplify the virus and transfer it to T cells. MDV subsequently establishes latency in T cells and transforms CD4+ T cells, resulting in fatal lymphomas. Despite many years of research, the exact role of the different B and T cell subsets in MDV pathogenesis remains poorly understood, mostly due to the lack of reverse genetics in chickens. Recently, Ig heavy chain J gene segment knockout (JH-KO) chickens lacking mature and peripheral B cells have been generated. To determine the role of these B cells in MDV pathogenesis, we infected JH-KO chickens with the very virulent MDV RB1B strain. Surprisingly, viral load in the blood of infected animals was not altered in the absence of B cells. More importantly, disease and tumor incidence in JH-KO chickens was comparable to wild-type animals, suggesting that both mature and peripheral B cells are dispensable for MDV pathogenesis. Intriguingly, MDV efficiently replicated in the bursa of Fabricius in JH-KO animals, while spread of the virus to the spleen and thymus was delayed. In the absence of B cells, MDV readily infected CD4+ and CD8+ T cells, allowing efficient virus replication in the lymphoid organs and transformation of T cells. Taken together, our data change the dogma of the central role of B cells, and thereby provide important insights into MDV pathogenesis.


Subject(s)
B-Lymphocytes/immunology , Genome, Viral , Herpesvirus 2, Gallid/pathogenicity , Lymphoma/pathology , Marek Disease/pathology , Oncogenic Viruses/pathogenicity , Animals , Animals, Genetically Modified , Animals, Newborn , Bursa of Fabricius/immunology , Bursa of Fabricius/virology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Chick Embryo , Chickens , DNA, Viral/genetics , DNA, Viral/immunology , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/immunology , Immunoglobulin Heavy Chains/genetics , Lymphocyte Count , Lymphoma/genetics , Lymphoma/immunology , Lymphoma/virology , Marek Disease/genetics , Marek Disease/immunology , Marek Disease/virology , Oncogenic Viruses/genetics , Oncogenic Viruses/immunology , Spleen/immunology , Spleen/virology , Thymus Gland/immunology , Thymus Gland/virology , Viral Load , Virulence , Virus Replication
8.
Vet Res ; 49(1): 31, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587836

ABSTRACT

Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells.


Subject(s)
Atrophy/veterinary , Chickens , Herpesvirus 2, Gallid/physiology , Lymphoid Tissue/pathology , Marek Disease/physiopathology , Poultry Diseases/physiopathology , Animals , Apoptosis , Atrophy/pathology , Atrophy/physiopathology , Atrophy/virology , Cell Proliferation , Lymphoid Tissue/physiopathology , Lymphopenia , Marek Disease/pathology , Marek Disease/virology , Poultry Diseases/pathology , Poultry Diseases/virology
9.
Avian Pathol ; 47(2): 179-188, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29039212

ABSTRACT

Infectious bursal disease virus (IBDV) is a Birnaviridae family member of economic importance for poultry. This virus infects and destroys developing B lymphocytes in the cloacal bursa, resulting in a potentially fatal or immunosuppressive disease in chickens. Naturally occurring viruses and many vaccine strains are not able to grow in in vitro systems without prior adaptation, which often affects viral properties such as virulence. Primary bursal cells, which are the main target cells of lymphotropic IBDV in vivo, may represent an attractive system for the study of IBDV. Unfortunately, bursal cells isolated from bursal follicles undergo apoptosis within hours following their isolation. Here, we demonstrate that ex vivo stimulation of bursal cells with phorbol 12-myristate 13-acetate maintains their viability long enough to allow IBDV replication to high titres. A wide range of field-derived or vaccine serotype 1 IBDV strains could be titrated in these phorbol 12-myristate 13-acetate -stimulated bursal cells and furthermore were permissive for replication of non-cell-culture-adapted viruses. These cells also supported multistep replication experiments and flow cytometry analysis of infection. Ex vivo-stimulated bursal cells therefore offer a promising tool in the study of IBDV.


Subject(s)
Bursa of Fabricius/cytology , Chickens , Infectious bursal disease virus/physiology , Virus Cultivation/veterinary , Animals , Cell Survival , Cells, Cultured , Tetradecanoylphorbol Acetate/pharmacology , Virus Cultivation/methods
10.
Proc Natl Acad Sci U S A ; 112(23): 7279-84, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26039998

ABSTRACT

Marek's disease virus (MDV) is an alphaherpesvirus that causes deadly T-cell lymphomas in chickens and serves as a natural small animal model for virus-induced tumor formation. In vivo, MDV lytically replicates in B cells that transfer the virus to T cells in which the virus establishes latency. MDV also malignantly transforms CD4+ T cells with a T(reg) signature, ultimately resulting in deadly lymphomas. No in vitro infection system for primary target cells of MDV has been available due to the short-lived nature of these cells in culture. Recently, we characterized cytokines and monoclonal antibodies that promote survival of cultured chicken B and T cells. We used these survival stimuli to establish a culture system that allows efficient infection of B and T cells with MDV. We were able to productively infect with MDV B cells isolated from spleen, bursa or blood cultured in the presence of soluble CD40L. Virus was readily transferred from infected B to T cells stimulated with an anti-TCRαVß1 antibody, thus recapitulating the in vivo situation in the culture dish. Infected T cells could then be maintained in culture for at least 90 d in the absence of TCR stimulation, which allowed the establishment of MDV-transformed lymphoblastoid cell lines (LCL). The immortalized cells had a signature comparable to MDV-transformed CD4+ α/ß T cells present in tumors. In summary, we have developed a novel in vitro system that precisely reflects the life cycle of an oncogenic herpesivrus in vivo and will allow us to investigate the interaction between virus and target cells in an easily accessible system.


Subject(s)
Mardivirus/physiology , Virus Latency , Virus Replication , Animals , B-Lymphocytes/virology , Cell Separation , Cell Transformation, Neoplastic , Cell Transformation, Viral , Cells, Cultured , Chickens , Flow Cytometry , Genes, Viral , Humans , In Situ Hybridization, Fluorescence , In Vitro Techniques , Mardivirus/genetics , T-Lymphocytes/virology
11.
BMC Genomics ; 18(1): 264, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28351377

ABSTRACT

BACKGROUND: Type I interferons are major players against viral infections and mediate their function by the induction of Interferon regulated genes (IRGs). Recently, it became obvious that these cytokines have a multitude of additional functions. Due to the unique features of the chickens' immune system, available data from mouse models are not easily transferable; hence we performed an extensive analysis of chicken IRGs. RESULTS: A broad database search for homologues to described mammalian IRGs (common IRGs, cIRGs) was combined with a transcriptome analysis of spleen and lung at different time points after application of IFNα. To apply physiological amounts of IFN, half-life of IFN in the chicken was determined. Interestingly, the calculated 36 min are considerably shorter than the ones obtained for human and mouse. Microarray analysis revealed many additional IRGs (newly identified IRGs; nIRGs) and network analysis for selected IRGs showed a broad interaction of nIRGs among each other and with cIRGs. We found that IRGs exhibit a highly tissue and time specific expression pattern as expression quality and quantity differed strongly between spleen and lung and over time. While in the spleen for many affected genes changes in RNA abundance peaked already after 3 h, an increasing or plateau-like regulation after 3, 6 and 9 h was observed in the lung. CONCLUSIONS: The induction or suppression of IRGs in chickens is both tissue and time specific and beside known antiviral mechanisms type I IFN induces many additional cellular functions. We confirmed many known IRGs and established a multitude of so far undescribed ones, thus providing a large database for future research on antiviral mechanisms and additional IFN functions in non-mammalian species.


Subject(s)
Chickens/genetics , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genes, Regulator , Interferons/pharmacology , Transcriptome , Animals , Chickens/metabolism , Cluster Analysis , Computational Biology/methods , Cytokines/genetics , Cytokines/metabolism , Databases, Genetic , Female , Gene Ontology , Gene Regulatory Networks , Interferon-alpha/pharmacokinetics , Interferon-alpha/pharmacology , Interferons/pharmacokinetics , Interleukin-6/genetics , Interleukin-6/metabolism , Nucleotide Motifs , Promoter Regions, Genetic , Response Elements , Signal Transduction
12.
J Virol ; 88(5): 2835-43, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24371053

ABSTRACT

Interferons (IFNs) are essential components of the antiviral defense system of vertebrates. In mammals, functional receptors for type III IFN (lambda interferon [IFN-λ]) are found mainly on epithelial cells, and IFN-λ was demonstrated to play a crucial role in limiting viral infections of mucosal surfaces. To determine whether IFN-λ plays a similar role in birds, we produced recombinant chicken IFN-λ (chIFN-λ) and we used the replication-competent retroviral RCAS vector system to generate mosaic-transgenic chicken embryos that constitutively express chIFN-λ. We could demonstrate that chIFN-λ markedly inhibited replication of various virus strains, including highly pathogenic influenza A viruses, in ovo and in vivo, as well as in epithelium-rich tissue and cell culture systems. In contrast, chicken fibroblasts responded poorly to chIFN-λ. When applied in vivo to 3-week-old chickens, recombinant chIFN-λ strongly induced the IFN-responsive Mx gene in epithelium-rich organs, such as lungs, tracheas, and intestinal tracts. Correspondingly, these organs were found to express high transcript levels of the putative chIFN-λ receptor alpha chain (chIL28RA) gene. Transfection of chicken fibroblasts with a chIL28RA expression construct rendered these cells responsive to chIFN-λ treatment, indicating that receptor expression determines cell type specificity of IFN-λ action in chickens. Surprisingly, mosaic-transgenic chickens perished soon after hatching, demonstrating a detrimental effect of constitutive chIFN-λ expression. Our data highlight fundamental similarities between the IFN-λ systems of mammals and birds and suggest that type III IFN might play a role in defending mucosal surfaces against viral intruders in most if not all vertebrates.


Subject(s)
Antiviral Agents/pharmacology , Interferons/pharmacology , Recombinant Proteins/pharmacology , Amino Acid Sequence , Animals , Animals, Genetically Modified , Cell Line , Chick Embryo , Chickens , Disease Resistance/genetics , Fibroblasts/drug effects , Fibroblasts/virology , Gene Expression , Gene Expression Regulation/drug effects , Genes, Lethal , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A virus/drug effects , Influenza A virus/pathogenicity , Influenza in Birds/drug therapy , Influenza in Birds/virology , Interferons/genetics , Interferons/metabolism , Molecular Sequence Data , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Receptors, Cytokine/chemistry , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Tissue Culture Techniques , Transcription, Genetic/drug effects , Virus Replication/drug effects
13.
Circ Res ; 113(5): 505-16, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23838132

ABSTRACT

RATIONALE: Cardiac neural crest cells (NCs) contribute to heart morphogenesis by giving rise to a variety of cell types from mesenchyme of the outflow tract, ventricular septum, and semilunar valves to neurons of the cardiac ganglia and smooth muscles of the great arteries. Failure in cardiac NC development results in outflow and ventricular septation defects commonly observed in congenital heart diseases. Cardiac NCs derive from the vagal neural tube, which also gives rise to enteric NCs that colonize the gut; however, so far, molecular mechanisms segregating these 2 populations and driving cardiac NC migration toward the heart have remained elusive. OBJECTIVE: Stromal-derived factor-1 (SDF1) is a chemokine that mediates oriented migration of multiple embryonic cells and mice deficient for Sdf1 or its receptors, Cxcr4 and Cxcr7, exhibit ventricular septum defects, raising the possibility that SDF1 might selectively drive cardiac NC migration toward the heart via a chemotactic mechanism. METHODS AND RESULTS: We show in the chick embryo that Sdf1 expression is tightly coordinated with the progression of cardiac NCs expressing Cxcr4. Cxcr4 loss-of-function causes delayed migration and enhanced death of cardiac NCs, whereas Sdf1 misexpression results in their diversion from their normal pathway, indicating that SDF1 acts as a chemoattractant for cardiac NCs. These alterations of SDF1 signaling result in severe cardiovascular defects. CONCLUSIONS: These data identify Sdf1 and its receptor Cxcr4 as candidate genes responsible for cardiac congenital pathologies in human.


Subject(s)
Chemokine CXCL12/physiology , Heart Septal Defects, Ventricular/physiopathology , Neural Crest/pathology , Receptors, CXCR4/physiology , Animals , Animals, Genetically Modified , Cell Movement , Chemokine CXCL12/biosynthesis , Chemokine CXCL12/deficiency , Chemokine CXCL12/genetics , Chemotaxis , Chick Embryo , Chimera , Coturnix/embryology , Ectoderm/metabolism , Gene Expression Regulation, Developmental , Heart/embryology , Heart Septal Defects, Ventricular/genetics , MicroRNAs/genetics , Neural Tube/cytology , Neural Tube/transplantation , Organ Specificity , Organogenesis , Receptors, CXCR/biosynthesis , Receptors, CXCR/genetics , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/biosynthesis , Receptors, CXCR4/deficiency , Receptors, CXCR4/genetics , Signal Transduction , Species Specificity , Transfection
14.
Front Vet Sci ; 11: 1385400, 2024.
Article in English | MEDLINE | ID: mdl-38846783

ABSTRACT

Multiparameter flow cytometry is a routine method in immunological studies incorporated in biomedical, veterinary, agricultural, and wildlife research and routinely used in veterinary clinical laboratories. Its use in the diagnostics of poultry diseases is still limited, but due to the continuous expansion of reagents and cost reductions, this may change in the near future. Although the structure and function of the avian immune system show commonalities with mammals, at the molecular level, there is often low homology across species. The cross-reactivity of mammalian immunological reagents is therefore low, but nevertheless, the list of reagents to study chicken immune cells is increasing. Recent improvement in multicolor antibody panels for chicken cells has resulted in more detailed analysis by flow cytometry and has allowed the discovery of novel leukocyte cell subpopulations. In this article, we present an overview of the reagents and guidance needed to perform multicolor flow cytometry using chicken samples and common pitfalls to avoid.

15.
Front Vet Sci ; 11: 1377414, 2024.
Article in English | MEDLINE | ID: mdl-38988976

ABSTRACT

Flow cytometry of blood samples is a very valuable clinical and research tool to monitor the immune response in human patients. Furthermore, it has been successfully applied in cats, such as for infections with feline immune deficiency virus (FIV). However, if cells are not isolated and frozen, analysis of anticoagulated blood samples requires mostly prompt processing following blood collection, making later analysis of stored full blood samples obtained in clinical studies often impossible. The SMART Tube system (SMART TUBE Inc., California, United States; SMT) allows fixation and long-term preservation of whole blood samples at -80°C. However, this system has so far only been applied to human biological samples. In the present study, a new flow cytometry SMART Tube protocol adapted for feline whole blood samples was successfully established allowing quantification of T-helper cells, cytotoxic T-cells, B-cells, monocytes, and neutrophils up to 2 years post sampling. Results obtained from frozen stabilized and fresh blood samples were compared for validation purposes and correlated to differential blood counts from a conventional hematology analyzer. Clinical applicability of the new technique was verified by using samples from a treatment study for feline infectious peritonitis (FIP). Using the new SMT protocol on retained samples, it could be demonstrated that long-term storage of these SMT tubes is also possible. In summary, the newly adapted SMT protocol proved suitable for performing flow cytometry analysis on stored feline whole blood samples, thus opening up new avenues for veterinary research on a variety of aspects of clinical interest.

16.
mBio ; : e0031524, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953352

ABSTRACT

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.

17.
Proteomics ; 13(1): 119-33, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23135993

ABSTRACT

Antibody producing B-cells are an essential component of the immune system. In contrast to human and mice where B-cells develop in the bone marrow, chicken B-cells develop in defined stages in the bursa of Fabricius, a gut associated lymphoid tissue. In order to gain a better understanding of critical biological processes like immigration of B-cell precursors into the bursa anlage, their differentiation and final emigration from the bursa we analyzed the proteome dynamics of this organ during embryonic and posthatch development. Samples were taken from four representative developmental stages (embryonic day (ED) 10, ED18, day 2, and day 28) and compared in an extensive 2D DIGE approach comprising six biological replicates per time point. Cluster analysis and PCA demonstrated high reliability and reproducibility of the obtained data set and revealed distinctive proteome profiles for the selected time points, which precisely reflect the differentiation processes. One hundred fifty three protein spots with significantly different intensities were identified by MS. We detected alterations in the abundance of several proteins assigned to retinoic acid metabolism (e.g. retinal-binding protein 5) and the actin-cytoskeleton (e.g. vinculin and gelsolin). By immunohistochemistry, desmin was identified as stromal cell protein associated with the maturation of B-cell follicles. Strongest protein expression difference (10.8-fold) was observed for chloride intracellular channel 2. This protein was thus far not associated with B-cell biology but our data suggest an important function in bursa B-cell development.


Subject(s)
B-Lymphocytes , Bursa of Fabricius/metabolism , Proteins , Proteome/analysis , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Bursa of Fabricius/cytology , Bursa of Fabricius/immunology , Chickens/growth & development , Chickens/immunology , Chickens/metabolism , Electrophoresis, Gel, Two-Dimensional , Immune System/growth & development , Immune System/metabolism , Proteins/classification , Proteins/isolation & purification , Proteins/metabolism , Proteome/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Microbiol Spectr ; 11(4): e0435122, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37318353

ABSTRACT

Ducks have recently received a lot of attention from the research community due to their importance as natural reservoirs of avian influenza virus (AIV). Still, there is a lack of tools to efficiently determine the immune status of ducks. The purpose of this work was to develop an automated differential blood count for the mallard duck (Anas platyrhynchos), to assess reference values of white blood cell (WBC) counts in this species, and to apply the protocol in an AIV field study. We established a flow cytometry-based duck WBC differential based on a no-lyse no-wash single-step one-tube technique, applying a combination of newly generated monoclonal antibodies with available duck-specific as well as cross-reacting chicken markers. The blood cell count enables quantification of mallard thrombocytes, granulocytes, monocytes, B cells, CD4+ T cells (T helper) and CD8+ cytotoxic T cells. The technique is reproducible, accurate, and much faster than traditional evaluations of blood smears. Stabilization of blood samples enables analysis up to 1 week after sampling, thus allowing for evaluation of blood samples collected in the field. We used the new technique to investigate a possible influence of sex, age, and AIV infection status on WBC counts in wild mallards. We show that age has an effect on the WBC counts in mallards, as does sex in juvenile mallards. Interestingly, males naturally infected with low pathogenic AIV showed a reduction of lymphocytes (lymphocytopenia) and thrombocytes (thrombocytopenia), which are both common in influenza A infection in humans. IMPORTANCE Outbreaks of avian influenza in poultry and humans are a global public health concern. Aquatic birds are the primary natural reservoir of avian influenza viruses (AIVs), and strikingly, AIVs mainly cause asymptomatic or mild infection in these species. Hence, immunological studies in aquatic birds are important for investigating variation in disease outcome of different hosts to AIV and may aid in early recognition and a better understanding of zoonotic events. Unfortunately, immunological studies in these species were so far hampered by the lack of diagnostic tools. Here, we present a technique that enables high-throughput white blood cell (WBC) analysis in the mallard and report changes in WBC counts in wild mallards naturally infected with AIV. Our protocol permits large-scale immune status monitoring in a widespread wild and domesticated duck species and provides a tool to further investigate the immune response in an important reservoir host of zoonotic viruses.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Humans , Ducks , Flow Cytometry , Influenza A virus/physiology , Birds
19.
STAR Protoc ; 4(2): 102343, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270781

ABSTRACT

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that infects immune cells and causes a deadly lymphoproliferative disease in chickens. Cytokines and monoclonal antibodies promote the survival of chicken lymphocytes in vitro. Here, we describe protocols for the isolation, maintenance, and efficient MDV infection of primary chicken lymphocytes and lymphocyte cell lines. This facilitates the investigation of key aspects of the MDV life cycle in the primary target cells of viral replication, latency, genome integration, and reactivation. For complete details on the use and execution of this protocol, please refer to Schermuly et al.,1 Bertzbach et al. (2019),2 and You et al.3 For a comprehensive background on MDV, please see Osterrieder et al.4 and Bertzbach et al. (2020).5.

20.
J Virol ; 85(16): 8307-15, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21632756

ABSTRACT

The type I interferon (IFN) system plays an important role in antiviral defense against influenza A viruses (FLUAV), which are natural chicken pathogens. Studies of mice identified the Mx1 protein as a key effector molecule of the IFN-induced antiviral state against FLUAV. Chicken Mx genes are highly polymorphic, and recent studies suggested that an Asn/Ser polymorphism at amino acid position 631 determines the antiviral activity of the chicken Mx protein. By employing chicken embryo fibroblasts with defined Mx-631 polymorphisms and retroviral vectors for the expression of Mx isoforms in chicken cells and embryonated eggs, we show here that neither the 631Asn nor the 631Ser variant of chicken Mx was able to confer antiviral protection against several lowly and highly pathogenic FLUAV strains. Using a short interfering RNA (siRNA)-mediated knockdown approach, we noted that the antiviral effect of type I IFN in chicken cells was not dependent on Mx, suggesting that some other IFN-induced factors must contribute to the inhibition of FLUAV in chicken cells. Finally, we found that both isoforms of chicken Mx protein appear to lack GTPase activity, which might explain the observed lack of antiviral activity.


Subject(s)
Chickens/immunology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Influenza A virus/immunology , Influenza in Birds/immunology , Interferon Type I/immunology , Animals , Cells, Cultured , Chick Embryo , Chickens/genetics , Chickens/virology , Fluorescent Antibody Technique , GTP Phosphohydrolases/metabolism , Myxovirus Resistance Proteins , Polymorphism, Single Nucleotide , Protein Isoforms , RNA Interference , RNA, Small Interfering , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL