Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Mol Cell ; 64(4): 815-825, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27840029

ABSTRACT

The five-subunit yeast Paf1 complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here, we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1C in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo.


Subject(s)
Gene Expression Regulation, Fungal , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , TATA-Box Binding Protein/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Amino Acid Motifs , Binding Sites , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cross-Linking Reagents/chemistry , Crystallography, X-Ray , Formaldehyde/chemistry , Histones/chemistry , Histones/genetics , Models, Molecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , TATA-Box Binding Protein/chemistry , TATA-Box Binding Protein/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination
2.
J Struct Biol ; 214(4): 107917, 2022 12.
Article in English | MEDLINE | ID: mdl-36332744

ABSTRACT

Nicotinamide-adenine dinucleotide (NAD) is centrally important to metabolic reactions that involve redox chemistry. In bacteria, NAD biosynthesis is controlled by different transcription factors, depending on the species. Among the four regulators identified so far, the protein NadQ is reported to act as a repressor of the de novo NAD biosynthetic pathway in proteobacteria. Using comparative genomics, a systematic reconstruction of NadQ regulons in thousands of fully sequenced bacterial genomes has been performed, confirming that NadQ is present in α-proteobacteria and some ß- and γ-proteobacteria, including pathogens like Bordetella pertussis and Neisseria meningitidis, where it likely controls de novo NAD biosynthesis. Through mobility shift assay and mutagenesis, the DNA binding activity of NadQ from Agrobacterium tumefaciens was experimentally validated and determined to be suppressed by ATP. The crystal structures of NadQ in native form and in complex with ATP were determined, indicating that NadQ is a dimer, with each monomer composed of an N-terminal Nudix domain hosting the effector binding site and a C-terminal winged helix-turn-helix domain that binds DNA. Within the dimer, we found one ATP molecule bound, at saturating concentration of the ligand, in keeping with an intrinsic asymmetry of the quaternary structure. Overall, this study provided the basis for depicting a working model of NadQ regulation mechanism.


Subject(s)
Bacteria , NAD , Adenosine Triphosphate
3.
J Biol Chem ; 296: 100066, 2021.
Article in English | MEDLINE | ID: mdl-33187988

ABSTRACT

Overexpression of γ-glutamyl transpeptidase (GGT1) has been implicated in an array of human diseases including asthma, reperfusion injury, and cancer. Inhibitors are needed for therapy, but development of potent, specific inhibitors of GGT1 has been hampered by a lack of structural information regarding substrate binding and cleavage. To enhance our understanding of the molecular mechanism of substrate cleavage, we have solved the crystal structures of human GGT1 (hGGT1) with glutathione (a substrate) and a phosphate-glutathione analog (an irreversible inhibitor) bound in the active site. These are the first structures of any eukaryotic GGT with the cysteinylglycine region of the substrate-binding site occupied. These structures and the structure of apo-hGGT reveal movement of amino acid residues within the active site as the substrate binds. Asn-401 and Thr-381 each form hydrogen bonds with two atoms of GSH spanning the γ-glutamyl bond. Three different atoms of hGGT1 interact with the carboxyl oxygen of the cysteine of GSH. Interactions between the enzyme and substrate change as the substrate moves deeper into the active site cleft. The substrate reorients and a new hydrogen bond is formed between the substrate and the oxyanion hole. Thr-381 is locked into a single conformation as an acyl bond forms between the substrate and the enzyme. These data provide insight on a molecular level into the substrate specificity of hGGT1 and provide an explanation for seemingly disparate observations regarding the enzymatic activity of hGGT1 mutants. This knowledge will aid in the design of clinically useful hGGT1 inhibitors.


Subject(s)
Dipeptides/metabolism , Enzyme Inhibitors/metabolism , gamma-Glutamyltransferase/antagonists & inhibitors , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Dipeptides/chemistry , Humans , Models, Molecular , Protein Conformation , gamma-Glutamyltransferase/chemistry , gamma-Glutamyltransferase/metabolism
4.
Chemistry ; 28(33): e202201402, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35604354

ABSTRACT

Invited for the cover of this issue is the collaborative research team coordinated by Arie van der Lee at the University of Montpellier. The image depicts chiral channels with highly mobile water molecules resulting from the robust self-organization of a simple achiral acetamide. Fully reversible release and re-uptake of water molecules takes place near ambient conditions, with efficient water transport and a good selectivity against NaCl suggesting it to be an efficient candidate for desalination processes. Read the full text of the article at 10.1002/chem.20200383.


Subject(s)
Aquaporins , Water , Acetamides
5.
Chemistry ; 28(33): e202200383, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35420228

ABSTRACT

Achiral 2-hydroxy-N-(diphenylmethyl)acetamide (HNDPA) crystallizes in the P61 chiral space group as a hydrate, building up permeable chiral crystalline helical water channels. The crystallization-driven chiral self-resolution process is highly robust, with the same air-stable crystalline form readily obtained under a variety of conditions. Interestingly, the HNDPA supramolecular helix inner pore is filled by a helical water wire. The whole edifice is mainly stabilized by robust hydrogen bonds involving the HNDPA amide bonds and CH… π interactions between the HNDPA phenyl groups. The crystalline structure shows breathing behavior, with completely reversible release and re-uptake of water inside the chiral channel under ambient conditions. Importantly, the HNDPA channel is able to transport water very efficiently and selectively under biomimetic conditions. With a permeability per channel of 3.3 million water molecules per second in large unilamellar vesicles (LUV) and total selectivity against NaCl, the HNDPA channel is a very promising functional nanomaterial for future applications.


Subject(s)
Aquaporins , Water , Acetamides , Crystallization , Hydrogen Bonding , Water/chemistry
6.
Proc Natl Acad Sci U S A ; 113(9): 2394-9, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26884182

ABSTRACT

Improved understanding of the relationship among structure, dynamics, and function for the enzyme phenylalanine hydroxylase (PAH) can lead to needed new therapies for phenylketonuria, the most common inborn error of amino acid metabolism. PAH is a multidomain homo-multimeric protein whose conformation and multimerization properties respond to allosteric activation by the substrate phenylalanine (Phe); the allosteric regulation is necessary to maintain Phe below neurotoxic levels. A recently introduced model for allosteric regulation of PAH involves major domain motions and architecturally distinct PAH tetramers [Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL, Jr (2013) Arch Biochem Biophys 530(2):73-82]. Herein, we present, to our knowledge, the first X-ray crystal structure for a full-length mammalian (rat) PAH in an autoinhibited conformation. Chromatographic isolation of a monodisperse tetrameric PAH, in the absence of Phe, facilitated determination of the 2.9 Å crystal structure. The structure of full-length PAH supersedes a composite homology model that had been used extensively to rationalize phenylketonuria genotype-phenotype relationships. Small-angle X-ray scattering (SAXS) confirms that this tetramer, which dominates in the absence of Phe, is different from a Phe-stabilized allosterically activated PAH tetramer. The lack of structural detail for activated PAH remains a barrier to complete understanding of phenylketonuria genotype-phenotype relationships. Nevertheless, the use of SAXS and X-ray crystallography together to inspect PAH structure provides, to our knowledge, the first complete view of the enzyme in a tetrameric form that was not possible with prior partial crystal structures, and facilitates interpretation of a wealth of biochemical and structural data that was hitherto impossible to evaluate.


Subject(s)
Biopolymers/chemistry , Phenylalanine Hydroxylase/chemistry , Animals , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Rats
7.
PLoS Genet ; 12(3): e1005941, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27031109

ABSTRACT

Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Carbohydrate Metabolism, Inborn Errors/genetics , Drosophila melanogaster/genetics , Nervous System Diseases/genetics , Synaptic Vesicles/genetics , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/pathology , Animals , Behavior, Animal , Carbohydrate Metabolism, Inborn Errors/pathology , Crystallography, X-Ray , Dimerization , Humans , Mutation, Missense , Nervous System Diseases/pathology , Protein Conformation , Synaptic Vesicles/pathology , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism
8.
J Biol Chem ; 291(49): 25364-25374, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27758857

ABSTRACT

Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation of interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. Additionally, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.


Subject(s)
G-Protein-Coupled Receptor Kinase 1/chemistry , Membrane Proteins/chemistry , Microfilament Proteins/chemistry , Multiprotein Complexes/chemistry , G-Protein-Coupled Receptor Kinase 1/genetics , G-Protein-Coupled Receptor Kinase 1/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Myosin Type II/chemistry , Myosin Type II/genetics , Myosin Type II/metabolism , Protein Domains , Protein Structure, Quaternary , Structure-Activity Relationship
9.
Nucleic Acids Res ; 43(16): 8077-88, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26206669

ABSTRACT

La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.


Subject(s)
5' Untranslated Regions , Autoantigens/chemistry , Ribonucleoproteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Autoantigens/metabolism , Conserved Sequence , Helix-Turn-Helix Motifs , Humans , Models, Molecular , RNA, Messenger/metabolism , Repetitive Sequences, Amino Acid , Ribonucleoproteins/metabolism , Static Electricity , SS-B Antigen
10.
J Biol Chem ; 290(28): 17576-86, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26013825

ABSTRACT

γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.


Subject(s)
gamma-Glutamyltransferase/chemistry , Aminobutyrates/chemistry , Aminobutyrates/pharmacology , Apoenzymes/chemistry , Catalysis , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glutamic Acid/metabolism , Humans , Models, Molecular , Organophosphonates/chemistry , Organophosphonates/pharmacology , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , gamma-Glutamyltransferase/antagonists & inhibitors , gamma-Glutamyltransferase/genetics
11.
J Biol Chem ; 290(25): 15746-15757, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25953903

ABSTRACT

Interchanging Leu-119 for Pro-119 at the tip of the ß4-ß5 loop in the first FK506 binding domain (FK1) of the FKBP51 and FKBP52 proteins, respectively, has been reported to largely reverse the inhibitory (FKBP51) or stimulatory (FKBP52) effects of these co-chaperones on the transcriptional activity of glucocorticoid and androgen receptor-protein complexes. Previous NMR relaxation studies have identified exchange line broadening, indicative of submillisecond conformational motion, throughout the ß4-ß5 loop in the FK1 domain of FKBP51, which are suppressed by the FKBP52-like L119P substitution. This substitution also attenuates exchange line broadening in the underlying ß2 and ß3a strands that is centered near a bifurcated main chain hydrogen bond interaction between these two strands. The present study demonstrates that these exchange line broadening effects arise from two distinct coupled conformational transitions, and the transition within the ß2 and ß3a strands samples a transient conformation that resembles the crystal structures of the selectively inhibited FK1 domain of FKBP51 recently reported. Although the crystal structures for their series of inhibitors were interpreted as evidence for an induced fit mechanism of association, the presence of a similar conformation being significantly populated in the unliganded FKBP51 domain is more consistent with a conformational selection binding process. The contrastingly reduced conformational plasticity of the corresponding FK1 domain of FKBP52 is consistent with the current model in which FKBP51 binds to both the apo- and hormone-bound forms of the steroid receptor to modulate its affinity for ligand, whereas FKBP52 binds selectively to the latter state.


Subject(s)
Models, Molecular , Receptors, Androgen/chemistry , Receptors, Glucocorticoid/chemistry , Tacrolimus Binding Proteins/chemistry , Amino Acid Substitution , Humans , Mutation, Missense , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
12.
Biochim Biophys Acta ; 1852(1): 61-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25463631

ABSTRACT

Triosephosphate isomerase (TPI) is a glycolytic enzyme which homodimerizes for full catalytic activity. Mutations of the TPI gene elicit a disease known as TPI Deficiency, a glycolytic enzymopathy noted for its unique severity of neurological symptoms. Evidence suggests that TPI Deficiency pathogenesis may be due to conformational changes of the protein, likely affecting dimerization and protein stability. In this report, we genetically and physically characterize a human disease-associated TPI mutation caused by an I170V substitution. Human TPI(I170V) elicits behavioral abnormalities in Drosophila. An examination of hTPI(I170V) enzyme kinetics revealed this substitution reduced catalytic turnover, while assessments of thermal stability demonstrated an increase in enzyme stability. The crystal structure of the homodimeric I170V mutant reveals changes in the geometry of critical residues within the catalytic pocket. Collectively these data reveal new observations of the structural and kinetic determinants of TPI Deficiency pathology, providing new insights into disease pathogenesis.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/pathology , Carbohydrate Metabolism, Inborn Errors/pathology , Catalytic Domain , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/metabolism , Anemia, Hemolytic, Congenital Nonspherocytic/enzymology , Animals , Behavior, Animal , Carbohydrate Metabolism, Inborn Errors/enzymology , Disease Models, Animal , Drosophila , Enzyme Stability , Humans , Mutation , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/genetics
13.
Proc Natl Acad Sci U S A ; 110(43): 17290-5, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24101474

ABSTRACT

Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.


Subject(s)
Chromatin/genetics , Nuclear Proteins/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Binding Sites/genetics , Blotting, Western , Chromatin/metabolism , Chromatin Immunoprecipitation , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics
14.
Proc Natl Acad Sci U S A ; 110(9): 3345-50, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23401505

ABSTRACT

The packaging of DNA into nucleosomal structures limits access for templated processes such as transcription and DNA repair. The repositioning or ejection of nucleosomes is therefore critically important for regulated events, including gene expression. This activity is provided by chromatin remodeling complexes, or remodelers, which are typically large, multisubunit complexes that use an ATPase subunit to translocate the DNA. Many remodelers contain pairs or multimers of actin-related proteins (ARPs) that contact the helicase-SANT-associated (HSA) domain within the catalytic ATPase subunit and are thought to regulate ATPase activity. Here, we determined the structure of a four-protein subcomplex within the SWI/SNF remodeler that comprises the Snf2 HSA domain, Arp7, Arp9, and repressor of Ty1 transposition, gene 102 (Rtt102). Surprisingly, unlike characterized actin-actin associations, the two ARPs pack like spoons and straddle the HSA domain, which forms a 92-Å-long helix. The ARP-HSA interactions are reminiscent of contacts between actin and many binding partners and are quite different from those in the Arp2/3 complex. Rtt102 wraps around one side of the complex in a highly extended conformation that contacts both ARPs and therefore stabilizes the complex, yet functions to reduce by ∼2.4-fold the remodeling and ATPase activity of complexes containing the Snf2 ATPase domain. Thus, our structure provides a foundation for developing models of remodeler function, including mechanisms of coupling between ARPs and the ATPase translocation activity.


Subject(s)
Actins/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/chemistry , Microfilament Proteins/chemistry , Multiprotein Complexes/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Transcription Factors/chemistry , Animals , Chromosomal Proteins, Non-Histone/metabolism , Crystallography, X-Ray , Drosophila melanogaster/metabolism , Microfilament Proteins/metabolism , Models, Molecular , Multiprotein Complexes/metabolism , Nucleosomes/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
15.
J Am Chem Soc ; 137(8): 2792-5, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25650486

ABSTRACT

We report that in the red light-absorbing (Pr) state, the bilin chromophore of the Deinococcus radiodurans proteobacterial phytochrome (DrBphP) is hypersensitive to X-ray photons used in typical synchrotron X-ray protein crystallography experiments. This causes the otherwise fully protonated chromophore to deprotonate without additional major structural changes. These results have major implications for our understanding of the structural and chemical characteristics of the resting and intermediate states of phytochromes and other photoreceptor proteins.


Subject(s)
Bacterial Proteins/chemistry , Bile Pigments/chemistry , Deinococcus , Phytochrome/chemistry , Protons , Crystallography, X-Ray , Molecular Dynamics Simulation , Protein Conformation , X-Rays/adverse effects
16.
J Am Chem Soc ; 137(11): 3859-66, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25738615

ABSTRACT

This paper uses the binding pocket of human carbonic anhydrase II (HCAII, EC 4.2.1.1) as a tool to examine the properties of Hofmeister anions that determine (i) where, and how strongly, they associate with concavities on the surfaces of proteins and (ii) how, upon binding, they alter the structure of water within those concavities. Results from X-ray crystallography and isothermal titration calorimetry show that most anions associate with the binding pocket of HCAII by forming inner-sphere ion pairs with the Zn(2+) cofactor. In these ion pairs, the free energy of anion-Zn(2+) association is inversely proportional to the free energetic cost of anion dehydration; this relationship is consistent with the mechanism of ion pair formation suggested by the "law of matching water affinities". Iodide and bromide anions also associate with a hydrophobic declivity in the wall of the binding pocket. Molecular dynamics simulations suggest that anions, upon associating with Zn(2+), trigger rearrangements of water that extend up to 8 Å away from their surfaces. These findings expand the range of interactions previously thought to occur between ions and proteins by suggesting that (i) weakly hydrated anions can bind complementarily shaped hydrophobic declivities, and that (ii) ion-induced rearrangements of water within protein concavities can (in contrast with similar rearrangements in bulk water) extend well beyond the first hydration shells of the ions that trigger them. This study paints a picture of Hofmeister anions as a set of structurally varied ligands that differ in size, shape, and affinity for water and, thus, in their ability to bind to­and to alter the charge and hydration structure of­polar, nonpolar, and topographically complex concavities on the surfaces of proteins.


Subject(s)
Carbonic Anhydrase II/metabolism , Anions , Binding Sites , Carbonic Anhydrase II/chemistry , Coenzymes , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Stability , Thermodynamics , Zinc
17.
Proc Natl Acad Sci U S A ; 109(36): 14381-6, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22908299

ABSTRACT

Tyr142, the C-terminal amino acid of histone variant H2A.X is phosphorylated by WSTF (Williams-Beuren syndrome transcription factor), a component of the WICH complex (WSTF-ISWI chromatin-remodeling complex), under basal conditions in the cell. In response to DNA double-strand breaks (DSBs), H2A.X is instantaneously phosphorylated at Ser139 by the kinases ATM and ATR and is progressively dephosphorylated at Tyr142 by the Eya1 and Eya3 tyrosine phosphatases, resulting in a temporal switch from a postulated diphosphorylated (pSer139, pTyr142) to monophosphorylated (pSer139) H2A.X state. How mediator proteins interpret these two signals remains a question of fundamental interest. We provide structural, biochemical, and cellular evidence that Microcephalin (MCPH1), an early DNA damage response protein, can read both modifications via its tandem BRCA1 C-terminal (BRCT) domains, thereby emerging as a versatile sensor of H2A.X phosphorylation marks. We show that MCPH1 recruitment to sites of DNA damage is linked to both states of H2A.X.


Subject(s)
DNA Repair/physiology , Histones/metabolism , Models, Molecular , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Phosphoserine/metabolism , Phosphotyrosine/metabolism , Calorimetry , Cell Cycle Proteins , Cloning, Molecular , Crystallography, X-Ray , Cytoskeletal Proteins , DNA Damage/physiology , Escherichia coli , Genetic Vectors/genetics , Humans , Microscopy, Fluorescence , Nerve Tissue Proteins/genetics
18.
Proteins ; 82(3): 528-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23999883

ABSTRACT

The X-ray structures of the hemoglobin from Synechococcus sp. PCC 7002 (GlbN) were solved in the ferric bis-histidine (1.44 Å resolution) and cyanide-bound (2.25 Å resolution) states with covalently attached heme. The two structures illustrate the conformational changes and cavity opening caused by exogenous ligand binding. They also reveal an unusually distorted heme, ruffled as in c cytochromes. Comparison to the solution structure demonstrates the influence of crystal packing on several structural elements, whereas comparison to GlbN from Synechocystis sp. PCC 6803 shows subtle differences in heme geometries and environment. The new structures will be instrumental in elucidating GlbN reactivity.


Subject(s)
Crystallography, X-Ray/methods , Heme/chemistry , Hemoglobins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Synechococcus/chemistry , Models, Molecular , Protein Conformation
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 636-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24598733

ABSTRACT

The primary known physiological function of FKBP12.6 involves its role in regulating the RyR2 isoform of ryanodine receptor Ca(2+) channels in cardiac muscle, pancreatic ß islets and the central nervous system. With only a single previously reported X-ray structure of FKBP12.6, bound to the immunosuppressant rapamycin, structural inferences for this protein have been drawn from the more extensive studies of the homologous FKBP12. X-ray structures at 1.70 and 1.90 Šresolution from P21 and P3121 crystal forms are reported for an unligated cysteine-free variant of FKBP12.6 which exhibit a notable diversity of conformations. In one monomer from the P3121 crystal form, the aromatic ring of Phe59 at the base of the active site is rotated perpendicular to its typical orientation, generating a steric conflict for the immunosuppressant-binding mode. The peptide unit linking Gly89 and Val90 at the tip of the protein-recognition `80s loop' is flipped in the P21 crystal form. Unlike the >30 reported FKBP12 structures, the backbone conformation of this loop closely follows that of the first FKBP domain of FKBP51. The NMR resonances for 21 backbone amides of FKBP12.6 are doubled, corresponding to a slow conformational transition centered near the tip of the 80s loop, as recently reported for 31 amides of FKBP12. The comparative absence of doubling for residues along the opposite face of the active-site pocket in FKBP12.6 may in part reflect attenuated structural coupling owing to increased conformational plasticity around the Phe59 ring.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Tacrolimus Binding Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Ligands , Phenylalanine/chemistry , Protein Conformation , Structural Homology, Protein , Tacrolimus Binding Protein 1A/chemistry
20.
J Synchrotron Radiat ; 21(Pt 3): 627-32, 2014 May.
Article in English | MEDLINE | ID: mdl-24763654

ABSTRACT

Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.


Subject(s)
Crystallography, X-Ray/instrumentation , Lenses , Macromolecular Substances/chemistry , Synchrotrons/instrumentation , Equipment Design , Equipment Failure Analysis , Light , New York , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL