Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 21(11): 1397-1407, 2020 11.
Article in English | MEDLINE | ID: mdl-32989328

ABSTRACT

Antiviral CD8+ T cell responses are characterized by an initial activation/priming of T lymphocytes followed by a massive proliferation, subset differentiation, population contraction and the development of a stable memory pool. The transcription factor BATF3 has been shown to play a central role in the development of conventional dendritic cells, which in turn are critical for optimal priming of CD8+ T cells. Here we show that BATF3 was expressed transiently within the first days after T cell priming and had long-lasting T cell-intrinsic effects. T cells that lacked Batf3 showed normal expansion and differentiation, yet succumbed to an aggravated contraction and had a diminished memory response. Vice versa, BATF3 overexpression in CD8+ T cells promoted their survival and transition to memory. Mechanistically, BATF3 regulated T cell apoptosis and longevity via the proapoptotic factor BIM. By programing CD8+ T cell survival and memory, BATF3 is a promising molecule to optimize adoptive T cell therapy in patients.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cellular Reprogramming/genetics , Immunologic Memory/genetics , Repressor Proteins/genetics , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Cell Survival/genetics , Gene Expression , Humans , Immunophenotyping , Mice , Mice, Knockout , Mice, Transgenic , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Nat Immunol ; 18(9): 1004-1015, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28759001

ABSTRACT

Avoiding destruction by immune cells is a hallmark of cancer, yet how tumors ultimately evade control by natural killer (NK) cells remains incompletely defined. Using global transcriptomic and flow-cytometry analyses and genetically engineered mouse models, we identified the cytokine-TGF-ß-signaling-dependent conversion of NK cells (CD49a-CD49b+Eomes+) into intermediate type 1 innate lymphoid cell (intILC1) (CD49a+CD49b+Eomes+) populations and ILC1 (CD49a+CD49b-Eomesint) populations in the tumor microenvironment. Strikingly, intILC1s and ILC1s were unable to control local tumor growth and metastasis, whereas NK cells favored tumor immunosurveillance. Experiments with an antibody that neutralizes the cytokine TNF suggested that escape from the innate immune system was partially mediated by TNF-producing ILC1s. Our findings provide new insight into the plasticity of group 1 ILCs in the tumor microenvironment and suggest that the TGF-ß-driven conversion of NK cells into ILC1s is a previously unknown mechanism by which tumors escape surveillance by the innate immune system.


Subject(s)
Cellular Reprogramming/immunology , Fibrosarcoma/immunology , Gastrointestinal Neoplasms/immunology , Gastrointestinal Stromal Tumors/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Neoplasms, Experimental/immunology , Tumor Escape/immunology , Animals , Case-Control Studies , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression Profiling , Humans , Killer Cells, Natural/cytology , Lymphocytes/cytology , Lymphocytes/immunology , Mice , Sequence Analysis, RNA , Signal Transduction , Transforming Growth Factor beta/immunology
4.
Immunity ; 53(3): 476-478, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937147

ABSTRACT

In this issue, Acharya et al. demonstrate that glucocorticoids produced by macrophages and monocytes in the tumor microenvironment induce a dysfunctional CD8+ T cell phenotype. Blocking myeloid glucocorticogenesis enhances tumor immune surveillance and responsiveness to immune checkpoint therapy.


Subject(s)
Glucocorticoids , Tumor Microenvironment , CD8-Positive T-Lymphocytes , Cell Differentiation , Myeloid Cells
5.
Immunity ; 52(4): 620-634.e6, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32268121

ABSTRACT

Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.


Subject(s)
Allergens/administration & dosage , Asthma/diet therapy , Diacylglycerol O-Acyltransferase/immunology , Diet, Ketogenic/methods , Interleukin-33/immunology , Lipid Droplets/metabolism , T-Lymphocyte Subsets/immunology , Alternaria/chemistry , Animals , Asthma/chemically induced , Asthma/immunology , Asthma/pathology , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Lineage/immunology , Cytokines/administration & dosage , Diacylglycerol O-Acyltransferase/genetics , Disease Models, Animal , Fatty Acids/immunology , Fatty Acids/metabolism , Gene Expression Regulation , Glucose/immunology , Glucose/metabolism , Immunity, Innate , Interleukin-33/administration & dosage , Interleukin-33/genetics , Interleukins/administration & dosage , Lipid Droplets/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma/genetics , PPAR gamma/immunology , Papain/administration & dosage , Phospholipids/immunology , Phospholipids/metabolism , Primary Cell Culture , T-Lymphocyte Subsets/classification , T-Lymphocyte Subsets/drug effects , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Thymic Stromal Lymphopoietin
6.
Immunity ; 53(3): 564-580.e9, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32750334

ABSTRACT

Tumor immune escape limits durable responses to T cell therapy. Here, we examined how regulation and function of gene products that provide the target epitopes for CD8+ T cell anti-tumor immunity influence therapeutic efficacy and resistance. We used a CRISPR-Cas9-based method (CRISPitope) in syngeneic melanoma models to fuse the same model CD8+ T cell epitope to the C-termini of different endogenous gene products. Targeting melanosomal proteins or oncogenic CDK4R24C (Cyclin-dependent kinase 4) by adoptive cell transfer (ACT) of the same epitope-specific CD8+ T cells revealed diverse genetic and non-genetic immune escape mechanisms. ACT directed against melanosomal proteins, but not CDK4R24C, promoted melanoma dedifferentiation, and increased myeloid cell infiltration. CDK4R24C antigen persistence was associated with an interferon-high and T-cell-rich tumor microenvironment, allowing for immune checkpoint inhibition as salvage therapy. Thus, the choice of target antigen determines the phenotype and immune contexture of recurrent melanomas, with implications to the design of cancer immunotherapies.


Subject(s)
Adoptive Transfer/methods , CD8-Positive T-Lymphocytes/transplantation , Epitopes, T-Lymphocyte/immunology , Melanoma/immunology , Melanoma/therapy , Tumor Escape/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell- and Tissue-Based Therapy/methods , Epitopes, T-Lymphocyte/genetics , Gene Knockout Techniques , Immune Checkpoint Inhibitors/pharmacology , Mice , Mice, Inbred C57BL , Myeloid Cells/cytology , Myeloid Cells/immunology , Tumor Microenvironment/immunology
7.
Immunity ; 53(4): 805-823.e15, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053330

ABSTRACT

The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/immunology , Receptors, Virus/immunology , Animals , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/immunology , Immunotherapy/methods , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma/immunology , Mice , Mice, Inbred C57BL
8.
Mol Cell ; 77(1): 120-137.e9, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31733993

ABSTRACT

Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined. Here, we show that MITF is a lineage-restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD) and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signaling, and an ATF4-mediated feedback loop that maintains de-differentiation. Our results reveal that MITF is a lineage-specific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype switching, and highlight that cell phenotype dictates the response to drugs targeting lipid metabolism.


Subject(s)
Adaptation, Physiological/physiology , Fatty Acids/metabolism , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Stearoyl-CoA Desaturase/metabolism , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Down-Regulation/physiology , Humans , Mice , Neoplasm Invasiveness/pathology , Phenotype , Signal Transduction/physiology
9.
Cell ; 151(5): 937-50, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23178117

ABSTRACT

Inhibitors of the ALK and EGF receptor tyrosine kinases provoke dramatic but short-lived responses in lung cancers harboring EML4-ALK translocations or activating mutations of EGFR, respectively. We used a large-scale RNAi screen to identify MED12, a component of the transcriptional MEDIATOR complex that is mutated in cancers, as a determinant of response to ALK and EGFR inhibitors. MED12 is in part cytoplasmic where it negatively regulates TGF-ßR2 through physical interaction. MED12 suppression therefore results in activation of TGF-ßR signaling, which is both necessary and sufficient for drug resistance. TGF-ß signaling causes MEK/ERK activation, and consequently MED12 suppression also confers resistance to MEK and BRAF inhibitors in other cancers. MED12 loss induces an EMT-like phenotype, which is associated with chemotherapy resistance in colon cancer patients and to gefitinib in lung cancer. Inhibition of TGF-ßR signaling restores drug responsiveness in MED12(KD) cells, suggesting a strategy to treat drug-resistant tumors that have lost MED12.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Mediator Complex/metabolism , Neoplasms/drug therapy , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Carcinoma, Non-Small-Cell Lung/drug therapy , Epithelial-Mesenchymal Transition , Humans , Lung Neoplasms/drug therapy , MAP Kinase Signaling System , Mediator Complex/genetics
10.
Immunity ; 47(6): 1007-1009, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29262340

ABSTRACT

Mutant RAS is a major oncoprotein in human cancer and PD-L1 is a key driver of cancer immune evasion. In this issue of Immunity, Coelho et al. (2017) demonstrate that oncogenic RAS signaling promotes tumor immune escape by stabilizing PD-L1 mRNA.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Immune Evasion , RNA, Messenger , Tumor Escape
11.
Immunity ; 47(4): 789-802.e9, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045907

ABSTRACT

Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T cell infiltration in tumors. This therapeutic effect was independent of tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition, neutrophils recruited to T cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors.


Subject(s)
Immunotherapy/methods , Neoplasms, Experimental/therapy , Neutrophils/immunology , Proto-Oncogene Proteins c-met/immunology , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Kaplan-Meier Estimate , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Neutrophils/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
12.
Cell ; 142(2): 218-29, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20655465

ABSTRACT

Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.


Subject(s)
Neuroblastoma/diagnosis , Neurofibromin 1/metabolism , Tretinoin/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Humans , Neuroblastoma/metabolism , Neurofibromin 1/genetics , Prognosis , Proteins , Signal Transduction , Transcriptional Activation
13.
Nature ; 566(7745): E10, 2019 02.
Article in English | MEDLINE | ID: mdl-30742076

ABSTRACT

Panel j was inadvertently labelled as panel k in the caption to Fig. 4. Similarly, 'Fig. 4k' should have been 'Fig. 4j' in the sentence beginning 'TNF-α-deficient gBT-I cells were…'. In addition, the surname of author Umaimainthan Palendira was misspelled 'Palendria'. These errors have been corrected online.

14.
Nature ; 565(7739): 366-371, 2019 01.
Article in English | MEDLINE | ID: mdl-30598548

ABSTRACT

The immune system can suppress tumour development both by eliminating malignant cells and by preventing the outgrowth and spread of cancer cells that resist eradication1. Clinical and experimental data suggest that the latter mode of control-termed cancer-immune equilibrium1-can be maintained for prolonged periods of time, possibly up to several decades2-4. Although cancers most frequently originate in epithelial layers, the nature and spatiotemporal dynamics of immune responses that maintain cancer-immune equilibrium in these tissue compartments remain unclear. Here, using a mouse model of transplantable cutaneous melanoma5, we show that tissue-resident memory CD8+ T cells (TRM cells) promote a durable melanoma-immune equilibrium that is confined to the epidermal layer of the skin. A proportion of mice (~40%) transplanted with melanoma cells remained free of macroscopic skin lesions long after epicutaneous inoculation, and generation of tumour-specific epidermal CD69+ CD103+ TRM cells correlated with this spontaneous disease control. By contrast, mice deficient in TRM formation were more susceptible to tumour development. Despite being tumour-free at the macroscopic level, mice frequently harboured melanoma cells in the epidermal layer of the skin long after inoculation, and intravital imaging revealed that these cells were dynamically surveyed by TRM cells. Consistent with their role in melanoma surveillance, tumour-specific TRM cells that were generated before melanoma inoculation conferred profound protection from tumour development independently of recirculating T cells. Finally, depletion of TRM cells triggered tumour outgrowth in a proportion (~20%) of mice with occult melanomas, demonstrating that TRM cells can actively suppress cancer progression. Our results show that TRM cells have a fundamental role in the surveillance of subclinical melanomas in the skin by maintaining cancer-immune equilibrium. As such, they provide strong impetus for exploring these cells as targets of future anticancer immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Homeostasis/immunology , Immunologic Memory/immunology , Melanoma, Experimental/immunology , Skin Neoplasms/immunology , Skin/immunology , Aged , Animals , Disease Progression , Epidermis/immunology , Epidermis/pathology , Female , Humans , Male , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Middle Aged , Neoplasm Transplantation , Skin/pathology , Skin Neoplasms/pathology
15.
Mol Ther ; 32(2): 426-439, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38058126

ABSTRACT

Harnessing the immune system to eradicate tumors requires identification and targeting of tumor antigens, including tumor-specific neoantigens and tumor-associated self-antigens. Tumor-associated antigens are subject to existing immune tolerance, which must be overcome by immunotherapies. Despite many novel immunotherapies reaching clinical trials, inducing self-antigen-specific immune responses remains challenging. Here, we systematically investigate viral-vector-based cancer vaccines encoding a tumor-associated self-antigen (TRP2) for the treatment of established melanomas in preclinical mouse models, alone or in combination with adoptive T cell therapy. We reveal that, unlike foreign antigens, tumor-associated antigens require replication of lymphocytic choriomeningitis virus (LCMV)-based vectors to break tolerance and induce effective antigen-specific CD8+ T cell responses. Immunization with a replicating LCMV vector leads to complete tumor rejection when combined with adoptive TRP2-specific T cell transfer. Importantly, immunization with replicating vectors leads to extended antigen persistence in secondary lymphoid organs, resulting in efficient T cell priming, which renders previously "cold" tumors open to immune infiltration and reprograms the tumor microenvironment to "hot." Our findings have important implications for the design of next-generation immunotherapies targeting solid cancers utilizing viral vectors and adoptive cell transfer.


Subject(s)
Cancer Vaccines , Neoplasms , Mice , Animals , Lymphocytic choriomeningitis virus/genetics , CD8-Positive T-Lymphocytes , Neoplasms/drug therapy , Antigens, Neoplasm/genetics , Autoantigens , Tumor Microenvironment
16.
Genes Dev ; 31(1): 18-33, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28096186

ABSTRACT

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.


Subject(s)
Cell Plasticity/genetics , Cellular Reprogramming/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/genetics , Melanoma/genetics , Microphthalmia-Associated Transcription Factor/genetics , Protein Biosynthesis/genetics , Animals , Cellular Microenvironment , Evolution, Molecular , Feedback, Physiological , Gene Expression Regulation, Neoplastic/drug effects , Glutamine/pharmacology , Humans , Immunotherapy , Melanoma/drug therapy , Melanoma/metabolism , Neoplasm Invasiveness/genetics , Neural Crest/cytology , Phenotype , Transcription Factors/metabolism , Zebrafish/embryology
17.
J Cell Mol Med ; 28(14): e18572, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072867

ABSTRACT

Antibody-drug conjugates (ADCs) represent a novel type of targeted cancer therapy combining the specificity of monoclonal antibodies with the cytotoxicity of conventional chemotherapy. Recently, ADCs have demonstrated practice-changing efficacy across diverse solid cancers. The anti-NECTIN-4 ADC enfortumab vedotin (EV) has just been approved for patients with urothelial cancer and is currently under investigation for patients with castration-resistant prostate cancer (CRPC e.g. Phase II ENCORE trial). Our objective was to evaluate the efficacy of EV in established prostate cancer (PCa) cell lines and to examine the membranous NECTIN-4 expression in primary tumours (PRIM) and distant metastases (MET). NECTIN-4 was heterogeneously expressed in the panel of PCa cell lines. EV led to growth inhibition in NECTIN-4 expressing PCa cells (22Rv1 and LNCaP), whereas the NECTIN-4-negative PC-3 cells were significantly less responsive to EV, emphasizing the dependence of EV response on its target expression. Immunohistochemical staining revealed moderate membranous NECTIN-4 expression only in a small subgroup of CRPC patients with lung and peritoneal MET [n = 3/22 with H-score ≥100, median H-score 140 (IQR 130-150)], while 100% of PRIM (n = 48/48) and 86.4% of common MET sites (n = 19/22), including lymph node, bone and liver MET, were NECTIN-4 negative. In summary, EV may be effective in NECTIN-4-positive PCa. However, our findings demonstrate that the tumoural NECTIN-4 expression is predominantly low in metastatic PCa, which suggests that EV may only be effective in a biomarker-stratified subgroup.


Subject(s)
Antibodies, Monoclonal , Cell Adhesion Molecules , Prostatic Neoplasms , Humans , Male , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Cell Proliferation/drug effects , Nectins
18.
Histopathology ; 84(5): 863-876, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38196202

ABSTRACT

AIMS: Treatment options for advanced urothelial carcinoma (aUC) rapidly evolved: besides immunomodulative therapeutic options and inhibitors targeting Fibroblast growth factor receptor (FGFR) alterations, two new antibody-drug conjugates (ADC), sacituzumab govitecan (SG) and enfortumab vedotin (EV), have been approved. However, little is known about the associations of specific aUC properties and the surface target expression of TROP2 and NECTIN-4. Our aim was to characterize associations of TACSTD2/TROP2 and NECTIN-4/NECTIN-4 protein and gene expression with morphomolecular and clinicopathological characteristics of aUC in two large independent cohorts. METHODS AND RESULTS: The TCGA BLCA (n = 405) and the CCC-EMN (n = 247) cohorts were retrospectively analysed. TROP2/TACSTD2 and NECTIN-4/NECTIN-4 are highly expressed at the protein and transcript level in aUC, and their expression status did not correlate with patient survival in both cohorts. NECTIN-4/NECTIN-4 expression was higher in luminal tumours and reduced in squamous aUCs. NECTIN-4 was negative in 10.6% of samples, and 18.4% of samples had low expression (H-score <15). The TROP2 negativity rate amounted to 6.5%. TACSTD2 and NECTIN-4 expression was reduced in neuroendocrine-like and/or protein-based double-negative tumours. TROP2- and NECTIN-4-negative tumours included one sarcomatoid and four neuroendocrine aUC. FGFR3 alterations and PD-L1 expression on tumour and immune cells did not associate with TROP2 or NECTIN-4 expression. CONCLUSIONS: TACSTD2/TROP2 and NECTIN-4/NECTIN-4 are widely expressed in aUC, independent of FGFR3 alterations or PD-L1 expression, thus representing a suitable target for ADC treatment in the majority of aUC. The expression loss was associated with aggressive morphomolecular aUC subtypes, i.e. neuroendocrine(-like) and sarcomatoid aUC.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Nectins/genetics , B7-H1 Antigen , Retrospective Studies , Cell Adhesion Molecules/metabolism , Antigens, Neoplasm/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics
20.
Strahlenther Onkol ; 199(10): 891-900, 2023 10.
Article in English | MEDLINE | ID: mdl-37099166

ABSTRACT

PURPOSE: Radiation dermatitis (RD) represents one of the most frequent side effects in radiotherapy (RT). Despite technical progress, mild and moderate RD still affects major subsets of patients and identification and management of patients with a high risk of severe RD is essential. We sought to characterize surveillance and nonpharmaceutical preventive management of RD in German-speaking hospitals and private centers. METHODS: We conducted a survey on RD among German-speaking radiation oncologists inquiring for their evaluation of risk factors, assessment methods, and nonpharmaceutical preventive management of RD. RESULTS: A total of 244 health professionals from public and private institutions in Germany, Austria, and Switzerland participated in the survey. RT-dependent factors were deemed most relevant for RD onset followed by lifestyle factors, emphasizing the impact of treatment conceptualization and patient education. While a broad majority of 92.8% assess RD at least once during RT, 59.0% of participants report RD at least partially arbitrarily and 17.4% stated to classify RD severity solely arbitrarily. 83.7% of all participants were unaware of patient-reported outcomes (PROs). Consensus exists on some lifestyle recommendations like avoidance of sun exposure (98.7%), hot baths (95.1%), and mechanical irritation (91.8%) under RT, while deodorant use (63.4% not at all, 22.1% with restrictions) or application of skin lotion (15.1% disapproval) remain controversial and are not recommended by guidelines or evidence-based practices. CONCLUSION: Identification of patients at an increased risk of RD and subsequent implementation of adequate preventive measures remain relevant and challenging aspects of clinical routines. Consensus exists on several risk factors and nonpharmaceutical prevention recommendations, while RT-dependent risk factors, e.g., the fractionation scheme, or hygienic measures like deodorant use remain controversial. Surveillance is widely lacking methodology and objectivity. Intensifying outreach in the radiation oncology community is needed to improve practice patterns.


Subject(s)
Deodorants , Radiation Oncology , Radiodermatitis , Humans , Radiodermatitis/epidemiology , Radiodermatitis/etiology , Radiodermatitis/prevention & control , Dose Fractionation, Radiation , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL