Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Publication year range
1.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294405

ABSTRACT

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Subject(s)
Endoribonucleases/metabolism , Monocytes/immunology , Neutrophils/immunology , RNA, Bacterial/metabolism , RNA, Protozoan/metabolism , Toll-Like Receptor 8/metabolism , CRISPR-Cas Systems , Cell Line , Endoribonucleases/immunology , Erythrocytes/immunology , Erythrocytes/parasitology , Escherichia coli/chemistry , Escherichia coli/immunology , Gene Editing/methods , Humans , Listeria monocytogenes/chemistry , Listeria monocytogenes/immunology , Monocytes/microbiology , Monocytes/parasitology , Neutrophils/microbiology , Neutrophils/parasitology , Plasmodium falciparum/chemistry , Plasmodium falciparum/immunology , Primary Cell Culture , RNA Stability , RNA, Bacterial/immunology , RNA, Protozoan/immunology , Serratia marcescens/chemistry , Serratia marcescens/immunology , Staphylococcus aureus/chemistry , Staphylococcus aureus/immunology , Streptococcus/chemistry , Streptococcus/immunology , THP-1 Cells , Toll-Like Receptor 8/immunology
2.
PLoS Pathog ; 20(3): e1012071, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457461

ABSTRACT

BACKGROUND: Eosinophilia is a hallmark of helminth infections and eosinophils are essential in the protective immune responses against helminths. Nevertheless, the distinct role of eosinophils during parasitic filarial infection, allergy and autoimmune disease-driven pathology is still not sufficiently understood. In this study, we established a mouse model for microfilariae-induced eosinophilic lung disease (ELD), a manifestation caused by eosinophil hyper-responsiveness within the lung. METHODS: Wild-type (WT) BALB/c mice were sensitized with dead microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis three times at weekly intervals and subsequently challenged with viable MF to induce ELD. The resulting immune response was compared to non-sensitized WT mice as well as sensitized eosinophil-deficient dblGATA mice using flow cytometry, lung histology and ELISA. Additionally, the impact of IL-33 signaling on ELD development was investigated using the IL-33 antagonist HpARI2. RESULTS: ELD-induced WT mice displayed an increased type 2 immune response in the lung with increased frequencies of eosinophils, alternatively activated macrophages and group 2 innate lymphoid cells, as well as higher peripheral blood IgE, IL-5 and IL-33 levels in comparison to mice challenged only with viable MF or PBS. ELD mice had an increased MF retention in lung tissue, which was in line with an enhanced MF clearance from peripheral blood. Using eosinophil-deficient dblGATA mice, we demonstrate that eosinophils are essentially involved in driving the type 2 immune response and retention of MF in the lung of ELD mice. Furthermore, we demonstrate that IL-33 drives eosinophil activation in vitro and inhibition of IL-33 signaling during ELD induction reduces pulmonary type 2 immune responses, eosinophil activation and alleviates lung lacunarity. In conclusion, we demonstrate that IL-33 signaling is essentially involved in MF-induced ELD development. SUMMARY: Our study demonstrates that repeated sensitization of BALB/c mice with L. sigmodontis MF induces pulmonary eosinophilia in an IL-33-dependent manner. The newly established model recapitulates the characteristic features known to occur during eosinophilic lung diseases (ELD) such as human tropical pulmonary eosinophilia (TPE), which includes the retention of microfilariae in the lung tissue and induction of pulmonary eosinophilia and type 2 immune responses. Our study provides compelling evidence that IL-33 drives eosinophil activation during ELD and that blocking IL-33 signaling using HpARI2 reduces eosinophil activation, eosinophil accumulation in the lung tissue, suppresses type 2 immune responses and mitigates the development of structural damage to the lung. Consequently, IL-33 is a potential therapeutic target to reduce eosinophil-mediated pulmonary pathology.


Subject(s)
Asthma , Filariasis , Filarioidea , Pulmonary Eosinophilia , Humans , Animals , Mice , Microfilariae , Immunity, Innate , Filariasis/parasitology , Interleukin-33 , Lymphocytes/pathology , Filarioidea/physiology , Eosinophils , Mice, Inbred BALB C
3.
Infection ; 52(2): 471-482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37875775

ABSTRACT

BACKGROUND: Infection-associated secondary hemophagocytic lymphohistiocytosis (sHLH) is a potentially life-threatening hyperinflammatory condition caused by various infectious diseases. Malaria has rarely been described as trigger. The aim of this study is to collect data on frequency, clinical spectrum, and outcome of sHLH induced by malaria. METHODS: We collected case numbers on malaria and malaria-associated sHLH from specialized centers in Germany from 2015 to 2022. In addition, we conducted a literature search on published cases of malaria-associated sHLH and systematically analyzed the literature regarding clinical and diagnostic criteria. RESULTS: We obtained data from 13 centers treating 1461 malaria cases with different Plasmodium species, of which 5 patients (0.34%) also were diagnosed with sHLH. The literature search revealed detailed case reports from further 51 patients and case series comprising the description of further 24 patients with malaria-associated sHLH. Most cases (48/80; 60%) were reported from Asia. The median time interval between onset of malaria symptoms and hospital admission was 7 days. Severe complications of sHLH were documented in 36% (20/56) of patients, including two patients with multiple organ failure in our case series. Only 41% (23/56) of patients received specific treatment for sHLH, nevertheless the mortality rate (CFR) of 5% is lower compared to the CFR reported for sHLH triggered by other infectious diseases (e.g., 25% in sHLH due to EBV infection). CONCLUSION: Malaria-associated sHLH appears to have a comparatively good prognosis but may still represent an underdiagnosed and potentially fatal complication of malaria, especially in resource-poor settings.


Subject(s)
Communicable Diseases , Lymphohistiocytosis, Hemophagocytic , Malaria , Humans , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis , Retrospective Studies , Multiple Organ Failure , Malaria/complications
4.
PLoS Pathog ; 17(7): e1009682, 2021 07.
Article in English | MEDLINE | ID: mdl-34293063

ABSTRACT

Current mass drug administration (MDA) programs for the treatment of human river blindness (onchocerciasis) caused by the filarial worm Onchocerca volvulus rely on ivermectin, an anthelmintic originally developed for animal health. These treatments are primarily directed against migrating microfilariae and also suppress fecundity for several months, but fail to eliminate adult O. volvulus. Therefore, elimination programs need time frames of decades, well exceeding the life span of adult worms. The situation is worsened by decreased ivermectin efficacy after long-term therapy. To improve treatment options against onchocerciasis, a drug development candidate should ideally kill or irreversibly sterilize adult worms. Emodepside is a broad-spectrum anthelmintic used for the treatment of parasitic nematodes in cats and dogs (Profender and Procox). Our current knowledge of the pharmacology of emodepside is the result of more than 2 decades of intensive collaborative research between academia and the pharmaceutical industry. Emodepside has a novel mode of action with a broad spectrum of activity, including against extraintestinal nematode stages such as migrating larvae or macrofilariae. Therefore, emodepside is considered to be among the most promising candidates for evaluation as an adulticide treatment against onchocerciasis. Consequently, in 2014, Bayer and the Drugs for Neglected Diseases initiative (DNDi) started a collaboration to develop emodepside for the treatment of patients suffering from the disease. Macrofilaricidal activity has been demonstrated in various models, including Onchocerca ochengi in cattle, the parasite most closely related to O. volvulus. Emodepside has now successfully passed Phase I clinical trials, and a Phase II study is planned. This Bayer-DNDi partnership is an outstanding example of "One World Health," in which experience gained in veterinary science and drug development is translated to human health and leads to improved tools to combat neglected tropical diseases (NTDs) and shorten development pathways and timelines in an otherwise neglected area.


Subject(s)
Antiparasitic Agents/therapeutic use , Depsipeptides/therapeutic use , Drug Development/methods , Onchocerciasis/drug therapy , Humans
5.
Nat Prod Rep ; 39(9): 1705-1720, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35730490

ABSTRACT

Covering: August 1984 up to January 2022Worldwide, increasing morbidity and mortality due to antibiotic-resistant microbial infections has been observed. Therefore, better prevention and control of infectious diseases, as well as appropriate use of approved antibacterial drugs are crucial. There is also an urgent need for the continuous development and supply of novel antibiotics. Thus, identifying new antibiotics and their further development is once again a priority of natural product research. The antibiotic corallopyronin A was discovered in the 1980s in the culture broth of the Myxobacterium Corallococcus coralloides and serves, in the context of this review, as a show case for the development of a naturally occurring antibiotic compound. The review demonstrates how a hard to obtain, barely water soluble and unstable compound such as corallopyronin A can be developed making use of sophisticated production and formulation approaches. Corallopyronin A is a bacterial DNA-dependent RNA polymerase inhibitor with a new target site and one of the few representatives of this class currently in preclinical development. Efficacy against Gram-positive and Gram-negative pathogens, e.g., Chlamydia trachomatis, Orientia tsutsugamushi, Staphylococcus aureus, and Wolbachia has been demonstrated. Due to its highly effective in vivo depletion of Wolbachia, which are essential endobacteria of most filarial nematode species, and its robust macrofilaricidal efficacy, corallopyronin A was selected as a preclinical candidate for the treatment of human filarial infections. This review highlights the discovery and production optimization approaches for corallopyronin A, as well as, recent preclinical efficacy results demonstrating a robust macrofilaricidal effect of the anti-Wolbachia candidate, and the solid formulation strategy which enhances the stability as well as the bioavailability of corallopyronin A.


Subject(s)
Anti-Infective Agents , Biological Products , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biological Products/pharmacology , Humans , Lactones , Water
6.
Mar Drugs ; 20(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36005535

ABSTRACT

Two new ircinianin-type sesterterpenoids, ircinianin lactone B and ircinianin lactone C (7 and 8), together with five known entities from the ircinianin compound family (1, 3-6) were isolated from the marine sponge Ircinia wistarii. Ircinianin lactones B and C (7 and 8) represent new ircinianin terpenoids with a modified oxidation pattern. Despite their labile nature, the structures could be established using a combination of spectroscopic data, including HRESIMS and 1D/2D NMR techniques, as well as computational chemistry and quantum-mechanical calculations. In a broad screening approach for biological activity, the class-defining compound ircinianin (1) showed moderate antiprotozoal activity against Plasmodium falciparum (IC50 25.4 µM) and Leishmania donovani (IC50 16.6 µM).


Subject(s)
Porifera , Sesterterpenes , Animals , Lactones/chemistry , Lactones/pharmacology , Molecular Structure , Porifera/chemistry , Sesterterpenes/chemistry , Sesterterpenes/pharmacology , Terpenes/pharmacology
7.
Proc Natl Acad Sci U S A ; 116(4): 1414-1419, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30617067

ABSTRACT

Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Wolbachia/drug effects , Animals , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/microbiology , Female , Male , Mice , Mice, SCID , Onchocerciasis/drug therapy , Onchocerciasis/microbiology , Pyrimidines/pharmacology , Quinazolines/pharmacology
8.
Parasitol Res ; 121(4): 1199-1206, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35006317

ABSTRACT

The filarial nematode Onchocerca volvulus causes onchocerciasis (river blindness), a neglected tropical disease affecting 21 million people, mostly in Sub-Saharan Africa. Targeting the endosymbiont Wolbachia with antibiotics leads to permanent sterilization and killing of adult worms. The gold standard to assess Wolbachia depletion is the histological examination of adult worms in nodules beginning at 6 months post-treatment. However, nodules can only be used once, limiting the time points to monitor Wolbachia depletion. A diagnostic to longitudinally monitor Wolbachia depletion from microfilariae (MF) at more frequent intervals < 6 months post-treatment would accelerate clinical trials of antiwolbachials. We developed a TaqMan qPCR amplifying the single-copy gene wOvftsZ to quantify Wolbachia from as few as one MF that had migrated from skin biopsies and compared quantification using circular and linearized plasmids or synthetic dsDNA (gBlock®). qPCR for MF from the rodent nematode Litomosoides sigmodontis was used to support the reproducibility and validate the principle. The qPCR using as few as 2 MF from O. volvulus and L. sigmodontis reproducibly quantified Wolbachia. Use of a linearized plasmid standard or synthesized dsDNA resulted in numbers of Wolbachia/MF congruent with biologically plausible estimates in O. volvulus and L. sigmodontis MF. The qPCR assay yielded a median of 48.8 (range 1.5-280.5) Wolbachia/O. volvulus MF. The qPCR is a sensitive tool for quantifying Wolbachia in a few MF from skin biopsies and allows for establishing the qPCR as a surrogate parameter for monitoring Wolbachia depletion in adult worms of new antiwolbachial candidates.


Subject(s)
Filarioidea , Onchocerca volvulus , Wolbachia , Animals , Humans , Microfilariae , Onchocerca , Onchocerca volvulus/genetics , Reproducibility of Results , Wolbachia/drug effects , Wolbachia/genetics
9.
Parasitol Res ; 120(12): 4125-4143, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33547508

ABSTRACT

Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.


Subject(s)
Acanthocheilonema , Elephantiasis, Filarial , Filarioidea , Loiasis , Animals , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/epidemiology , Humans , Loiasis/drug therapy , Loiasis/epidemiology , Male , Mice , Models, Animal
10.
Immunology ; 159(2): 193-204, 2020 02.
Article in English | MEDLINE | ID: mdl-31631339

ABSTRACT

Excessive inflammatory immune responses during infections with Plasmodium parasites are responsible for severe complications such as cerebral malaria (CM) that can be studied experimentally in mice. Dendritic cells (DCs) activate cytotoxic CD8+ T-cells and initiate immune responses against the parasites. Batf3-/- mice lack a DC subset, which efficiently induces strong CD8 T-cell responses by cross-presentation of exogenous antigens. Here we show that Batf3-/- mice infected with Plasmodium berghei ANKA (PbA) were protected from experimental CM (ECM), characterized by a stable blood-brain barrier (BBB) and significantly less infiltrated peripheral immune cells in the brain. Importantly, the absence of ECM in Batf3-/- mice correlated with attenuated responses of cytotoxic T-cells, as their parasite-specific lytic activity as well as the production of interferon gamma and granzyme B were significantly decreased. Remarkably, spleens of ECM-protected Batf3-/- mice had elevated levels of regulatory immune cells and interleukin 10. Thus, protection from ECM in PbA-infected Batf3-/- mice was associated with the absence of strong CD8+ T-cell activity and induction of immunoregulatory mediators and cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/deficiency , Brain/immunology , Dendritic Cells/immunology , Malaria, Cerebral/prevention & control , Plasmodium berghei/pathogenicity , Repressor Proteins/deficiency , T-Lymphocytes, Cytotoxic/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Blood-Brain Barrier/immunology , Blood-Brain Barrier/parasitology , Brain/metabolism , Brain/parasitology , Cells, Cultured , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Disease Models, Animal , Female , Granzymes/immunology , Granzymes/metabolism , Host-Parasite Interactions , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Malaria, Cerebral/immunology , Malaria, Cerebral/metabolism , Malaria, Cerebral/parasitology , Mice, Inbred C57BL , Mice, Knockout , Plasmodium berghei/immunology , Repressor Proteins/genetics , Spleen/immunology , Spleen/metabolism , Spleen/parasitology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/parasitology
11.
FASEB J ; 33(5): 6497-6513, 2019 05.
Article in English | MEDLINE | ID: mdl-30807258

ABSTRACT

A type 1 immune response is involved in atherosclerosis progression, whereas the role of a type 2 polarization, especially with regard to an enhanced T helper (Th)2 cell differentiation, is still unclear. Helminths trigger type 2 immune responses, protecting the host from inflammatory disorders. We investigated whether an increased type 2 polarization by administration of Litomosoides sigmodontis adult worm extract (LsAg) affects atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Injections of 50 µg LsAg, i.p. into ApoE-/- mice induced a type 2 immune response shown by increased frequencies of peritoneal eosinophils and alternatively activated macrophages. To analyze the effect of LsAg on atherosclerosis initiation, ApoE-/- mice received a high-fat diet for 12 wk and weekly injections of 50 µg LsAg from wk 5 to 12. Therapeutic effects on advanced atherosclerosis were analyzed in mice that were fed a high-fat diet for 12 wk followed by 12 wk of normal chow and weekly LsAg injections. Both preventive and therapeutic LsAg application significantly decreased plaque size. Therapeutic treatment even caused regression of plaque size and macrophage density in the aortic root and reduced Th1-specific gene expression and intraplaque inflammation. In addition, plaque size after therapeutic treatment was inversely correlated with plaque-infiltrated alternatively activated macrophages. In vitro, LsAg treatment of HUVECs reduced intracellular levels of phosphorylated NF-κB-p65, IκB-α, and JNK1/2. In bifurcation flow-through slides, THP-1 cell adhesion to a HUVEC monolayer was decreased by LsAg in regions of nonuniform shear stress. Applying inhibitors of the respective kinases suggests JNK1/2 inhibition is involved in the suppressed cell adhesion. A switch to an enhanced type 2 immune response by LsAg exerts antiatherogenic effects on murine plaque development, indicating a protective role of a hampered type 1 polarization. In vitro, LsAg affects endothelial signaling pathways, among which JNK1/2 inhibition seems to be involved in the suppression of monocytic cell adhesion under proatherogenic shear stress.-Constanze, K., Tauchi, M., Furtmair, R., Urschel, K., Raaz-Schrauder, D., Neumann, A.-L., Frohberger, S. J., Hoerauf, A., Regus, S., Lang, W., Sagban, T. A., Stumpfe, F. M., Achenbach, S., Hübner, M. P., Dietel, B. Filarial extract of Litomosoides sigmodontis induces a type 2 immune response and attenuates plaque development in hyperlipidemic ApoE-knockout mice.


Subject(s)
Atherosclerosis/drug therapy , Complex Mixtures , Filarioidea/chemistry , Hyperlipidemias/drug therapy , Plaque, Atherosclerotic/drug therapy , Th2 Cells/immunology , Animals , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Atherosclerosis/immunology , Complex Mixtures/chemistry , Complex Mixtures/pharmacology , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Hyperlipidemias/chemically induced , Hyperlipidemias/genetics , Hyperlipidemias/immunology , Mice , Mice, Knockout, ApoE , Plaque, Atherosclerotic/chemically induced , Plaque, Atherosclerotic/immunology , Th1 Cells/immunology , Th1 Cells/pathology
12.
Glia ; 67(10): 1859-1872, 2019 10.
Article in English | MEDLINE | ID: mdl-31231866

ABSTRACT

Microglia mediated responses to neuronal damage in the form of neuroinflammation is a common thread propagating neuropathology. In this study, we investigated the microglial alterations occurring as a result of sphingosine 1-phosphate (S1P) accumulation in neural cells. We evidenced increased microglial activation in the brains of neural S1P-lyase (SGPL1) ablated mice (SGPL1fl/fl/Nes ) as shown by an activated and deramified morphology and increased activation markers on microglia. In addition, an increase of pro-inflammatory cytokines in sorted and primary cultured microglia generated from SGPL1 deficient mice was noticed. Further, we assessed autophagy, one of the major mechanisms in the brain that keeps inflammation in check. Indeed, microglial inflammation was accompanied by defective microglial autophagy in SGPL1 ablated mice. Rescuing autophagy by treatment with rapamycin was sufficient to decrease interleukin 6 (IL-6) but not tumor necrosis factor (TNF) secretion in cultured microglia. Rapamycin mediated decrease of IL-6 secretion suggests a particular mechanistic target of rapamycin (mTOR)-IL-6 link and appeared to be microglia specific. Using pharmacological inhibitors of the major receptors of S1P expressed in the microglia, we identified S1P receptor 2 (S1PR2) as the mediator of both impaired autophagy and proinflammatory effects. In line with these results, the addition of exogenous S1P to BV2 microglial cells showed similar effects as those observed in the genetic knock out of SGPL1 in the neural cells. In summary, we show a novel role of the S1P-S1PR2 axis in the microglia of mice with neural-targeted SGPL1 ablation and in BV2 microglial cell line exogenously treated with S1P.


Subject(s)
Aldehyde-Lyases/metabolism , Autophagy/physiology , Inflammation/metabolism , Microglia/metabolism , Aldehyde-Lyases/antagonists & inhibitors , Aldehyde-Lyases/genetics , Animals , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Inflammation/pathology , Interleukin-6/metabolism , Mice, Transgenic , Microglia/pathology , Sphingosine-1-Phosphate Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
14.
PLoS Pathog ; 11(1): e1004616, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25611587

ABSTRACT

Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s.) and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases, but may also present new therapeutic approaches for acute inflammatory diseases that do not impair bacterial control.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli/immunology , Filariasis/immunology , Filarioidea/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Sepsis/prevention & control , Animals , Chronic Disease , Coinfection , Escherichia coli Infections/prevention & control , Female , Filarioidea/microbiology , Gene Expression Regulation/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Sepsis/immunology , Wolbachia/immunology
15.
Clin Immunol ; 164: 119-22, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26898311

ABSTRACT

Animal studies demonstrated that administration of helminth products can protect from autoimmune diseases. However, the success of such administrations is limited in the case of type 1 diabetes, as protection is only provided if the administration is started before the development of insulitis. In this study we investigated whether inclusion of helminth antigen administrations to an antigen-specific treatment with proinsulin improves the protective effect by triggering non-specific regulatory immune responses. Using a combination therapy of intraperitoneal Litomosoides sigmodontis antigen and intranasal pro-insulin, onset of diabetes was prevented in NOD mice after insulitis started, while either administration alone failed to protect. This protection was associated with an increased frequency of regulatory T cells within the pancreatic lymph nodes and a reduced inflammation of the pancreatic islets. This suggests that inclusion of helminth antigens improve the protective effect provided by antigen-specific therapies and represent a new potential therapeutic approach against autoimmune diseases.


Subject(s)
Antigens, Helminth/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Filarioidea/immunology , Proinsulin/therapeutic use , Administration, Intranasal , Animals , Antigens, Helminth/pharmacology , Diabetes Mellitus, Type 1/immunology , Female , Injections, Intraperitoneal , Insulin/immunology , Islets of Langerhans/drug effects , Islets of Langerhans/immunology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Mice, Inbred NOD , Proinsulin/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
16.
Diabetes Metab Res Rev ; 32(3): 238-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26119261

ABSTRACT

It is estimated that by the year 2035 almost 600 million people will suffer from diabetes. In the case of type 2 diabetes, the strongest increase of diabetes incidence occurs in developing and newly industrialized countries. This increase correlates not only with a progressing sedentary lifestyle and nutritional changes, but also environmental changes. Similarly, the increase of type 1 diabetes incidence in industrialized countries over the past decades cannot be explained by genetic factors alone, suggesting that environmental changes are also involved. One such environmental change is a reduced exposure to pathogens because of improved hygiene. Parasitic helminths modulate the immune system of their hosts and induce type 2 as well as regulatory immune responses. As pro-inflammatory immune responses are crucial for the onset of both type 1 and type 2 diabetes, helminth-induced immunomodulation may prevent diabetes onset and ameliorate insulin sensitivity. Several epidemiological studies in human and experimental animal models support such a protective effect of helminths for autoimmune diabetes. Recent studies further suggest that helminths may also provide such a beneficial effect for type 2 diabetes. In this review we summarize studies that investigated parasitic helminths and helminth-derived products and their impact on both type 1 and type 2 diabetes highlighting potential protective mechanisms.


Subject(s)
Diabetes Mellitus, Type 1/prevention & control , Diabetes Mellitus, Type 2/prevention & control , Helminths/immunology , Animals , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 2/immunology , Humans , Immunomodulation
17.
Immunology ; 145(1): 150-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25521437

ABSTRACT

Sepsis initially starts with a systemic inflammatory response (SIRS phase) and is followed by a compensatory anti-inflammatory response syndrome (CARS) that causes impaired adaptive T-cell immunity, immune paralysis and an increased susceptibility to secondary infections. In contrast, parasitic filariae release thousands of microfilariae into the peripheral blood without triggering inflammation, as they induce regulatory, anti-inflammatory host responses. Hence, we investigated the impact of chronic filarial infection on adaptive T-cell responses during the SIRS and CARS phases of a systemic bacterial infection and analysed the development of T-cell paralysis following a subsequent adenovirus challenge in BALB/c mice. Chronic filarial infection impaired adenovirus-specific CD8(+) T-cell cytotoxicity and interferon-γ responses in the absence of a bacterial challenge and led to higher numbers of splenic CTLA-4(+)  CD4(+) T cells, whereas splenic T-cell expression of CD69 and CD62 ligand, serum cytokine levels and regulatory T-cell frequencies were comparable to naive controls. Irrespective of filarial infection, the SIRS phase dominated 6-24 hr after intravenous Escherichia coli challenge with increased T-cell activation and pro-inflammatory cytokine production, whereas the CARS phase occurred 6 days post E. coli challenge and correlated with high levels of transforming growth factor-ß and increased CD62 ligand T-cell expression. Escherichia coli-induced impairment of adenovirus-specific CD8(+) T-cell cytotoxicity and interferon-γ production was not additionally impaired by chronic filarial infection. This suggests that filarial immunoregulation does not exacerbate E. coli-induced T-cell paralysis.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Filariasis/immunology , Filarioidea/immunology , Systemic Inflammatory Response Syndrome/immunology , Animals , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Chronic Disease , Escherichia coli Infections/genetics , Escherichia coli Infections/pathology , Female , Filariasis/genetics , Filariasis/pathology , Interferon-gamma/genetics , Interferon-gamma/immunology , Mice , Mice, Inbred BALB C , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology
18.
J Immunol ; 188(9): 4188-99, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22461700

ABSTRACT

Basophils play a key role in the development and effector phases of type 2 immune responses in both allergic diseases and helminth infections. This study shows that basophils become less responsive to IgE-mediated stimulation when mice are chronically infected with Litomosoides sigmodontis, a filarial nematode, and Schistosoma mansoni, a blood fluke. Although excretory/secretory products from microfilariae of L. sigmodontis suppressed basophils in vitro, transfer of microfilariae into mice did not result in basophil suppression. Rather, reduced basophil responsiveness, which required the presence of live helminths, was found to be dependent on host IL-10 and was accompanied by decreases in key IgE signaling molecules known to be downregulated by IL-10. Given the importance of basophils in the development of type 2 immune responses, these findings help explain the mechanism by which helminths protect against allergy and may have broad implications for understanding how helminth infections alter other disease states in people.


Subject(s)
Basophils/immunology , Filariasis/immunology , Filarioidea/immunology , Interleukin-10/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Animals , Basophils/metabolism , Chronic Disease , Down-Regulation/genetics , Down-Regulation/immunology , Female , Filariasis/genetics , Filariasis/metabolism , Filarioidea/metabolism , Immunoglobulin E/genetics , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Schistosoma mansoni/metabolism , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Th2 Cells/immunology , Th2 Cells/metabolism
19.
J Immunol ; 188(2): 559-68, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22174447

ABSTRACT

Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-ß alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-ß, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-ß.


Subject(s)
Diabetes Mellitus, Type 1/prevention & control , Diabetes Mellitus, Type 1/parasitology , Filariasis/immunology , Filariasis/parasitology , Filarioidea/immunology , Th1 Cells/immunology , Transforming Growth Factor beta/biosynthesis , Animals , Diabetes Mellitus, Type 1/metabolism , Female , Filariasis/metabolism , Interleukin-10/biosynthesis , Interleukin-10/physiology , Interleukin-4/deficiency , Interleukin-4/genetics , Mice , Mice, 129 Strain , Mice, Inbred NOD , Mice, Knockout , Mice, Transgenic , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/parasitology , T-Lymphocytes, Regulatory/pathology , Th1 Cells/metabolism , Th1 Cells/parasitology , Transforming Growth Factor beta/physiology
20.
Int J Parasitol ; 54(5): 195-200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246406

ABSTRACT

Dirofilaria immitis is the causative agent for one of the major parasitic infections in dogs. It is currently not possible to reliably diagnose the infection before the development of fertile adult female worms and the presence of microfilariae which takes six to 7 months. However, at this point adult worms already reside in the pulmonary arteries and can cause significant damage. Novel in vivo models may facilitate the development of new diagnostic tools and improve treatment options for both the early and late stages of D. immitis infections. In this paper, we aimed to increase the capabilities of recently published mouse models in which severely immune-deficient mice were shown to be susceptible to D. immitis. Our data shows that D. immitis may grow into fully developed mature male and female worms in C57BL/6 Rag2/Il-2rγ-/- mice with comparable growth rates to the natural canine host. The adult worms of D. immitis were shown to migrate into body cavities as well as the heart in this model. However, the presence of adult worms inside the heart of infected mice led to the development of caval syndrome in 36% of infected mice after five to 6 months. Overall, the current study complements recently published efforts to establish a D. immitis mouse model by extending the development of D. immitis into mature adult stages and will facilitate further preclinical research.


Subject(s)
Dirofilaria immitis , Dirofilariasis , Dog Diseases , Rodent Diseases , Animals , Male , Dogs , Female , Mice , Dirofilaria immitis/genetics , Mice, Inbred C57BL , Microfilariae , Disease Susceptibility , Dog Diseases/parasitology , DNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL