Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Mol Cell Cardiol ; 126: 13-22, 2019 01.
Article in English | MEDLINE | ID: mdl-30445017

ABSTRACT

AIMS: Circulating immune cells have a significant impact on progression and outcome of heart failure. Long non-coding RNAs (lncRNAs) comprise novel epigenetic regulators which control cardiovascular diseases and inflammatory disorders. We aimed to identify lncRNAs regulated in circulating immune cells of the blood of heart failure patients. METHODS AND RESULTS: Next-generation sequencing revealed 110 potentially non-coding RNA transcripts differentially expressed in peripheral blood mononuclear cells of heart failure patients with reduced ejection fraction. The up-regulated lncRNA Heat2 was further functionally characterized. Heat2 expression was detected in whole blood, PBMNCs, eosinophil and basophil granulocytes. Heat2 regulates cell division, invasion, transmigration and immune cell adhesion on endothelial cells. CONCLUSION: Heat2 is an immune cell enriched lncRNA that is elevated in the blood of heart failure patients and controls cellular functions.


Subject(s)
Gene Expression Regulation , Heart Failure/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Case-Control Studies , Cohort Studies , Eosinophils/metabolism , Female , Heart Failure/blood , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Front Immunol ; 15: 1377955, 2024.
Article in English | MEDLINE | ID: mdl-39165363

ABSTRACT

Ataxia telangiectasia (AT) is a rare autosomal-recessive disorder characterized by profound neurodegeneration, combined immunodeficiency, and an increased risk for malignant diseases. Treatment options for AT are limited, and the long-term survival prognosis for patients remains grim, primarily due to the emergence of chronic respiratory pathologies, malignancies, and neurological complications. Understanding the dysregulation of the immune system in AT is fundamental for the development of novel treatment strategies. In this context, we performed a retrospective longitudinal immunemonitoring of lymphocyte subset distribution in a cohort of AT patients (n = 65). Furthermore, we performed FACS analyses of peripheral blood mononuclear cells from a subgroup of 12 AT patients to examine NK and T cells for the expression of activating and functional markers. We observed reduced levels of peripheral blood CD3+CD8+ cytotoxic T cells, CD3+CD4+ T helper cells, and CD19+ B cells, whereas the amount of CD3--CD56+ NK cells and CD3+CD56+ NKT-like cells was similar compared with age-matched controls. Notably, there was no association between the age-dependent kinetic of T-, B-, or NK-cell counts and the occurrence of malignancy in AT patients. Additionally, our results indicate an altered NK- and T-cell response to cytokine stimulation in AT with increased levels of TRAIL, FasL, and CD16 expression in NK cells, as well as an elevated activation level of T cells in AT with notably higher expression levels of IFN-γ, CD107a, TRAIL, and FasL. Together, these findings imply function alterations in AT lymphocytes, specifically in T and NK cells, shedding light on potential pathways for innovative therapies.


Subject(s)
Ataxia Telangiectasia , Killer Cells, Natural , Humans , Ataxia Telangiectasia/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Female , Child , Adolescent , Adult , Retrospective Studies , Child, Preschool , Young Adult , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immunophenotyping
SELECTION OF CITATIONS
SEARCH DETAIL