Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Neuroeng Rehabil ; 16(1): 122, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31651335

ABSTRACT

BACKGROUND: Virtual reality (VR)-based rehabilitation is considered a beneficial therapeutic option for stroke rehabilitation. This pilot study assessed the clinical feasibility of a newly developed VR-based planar motion exercise apparatus (Rapael Smart Board™ [SB]; Neofect Inc., Yong-in, Korea) for the upper extremities as an intervention and assessment tool. METHODS: This single-blinded, randomized, controlled trial included 26 stroke survivors. Patients were randomized to the intervention group (SB group) or control (CON) group. During one session, patients in the SB group completed 30 min of intervention using the SB and an additional 30 min of standard occupational therapy; however, those in the CON group completed the same amount of conventional occupational therapy. The primary outcome was the change in the Fugl-Meyer assessment (FMA) score, and the secondary outcomes were changes in the Wolf motor function test (WMFT) score, active range of motion (AROM) of the proximal upper extremities, modified Barthel index (MBI), and Stroke Impact Scale (SIS) score. A within-group analysis was performed using the Wilcoxon signed-rank test, and a between-group analysis was performed using a repeated measures analysis of covariance. Additionally, correlations between SB assessment data and clinical scale scores were analyzed by repeated measures correlation. Assessments were performed three times (baseline, immediately after intervention, and 1 month after intervention). RESULTS: All functional outcome measures (FMA, WMFT, and MBI) showed significant improvements (p < 0.05) in the SB and CON groups. AROM showed greater improvements in the SB group, especially regarding shoulder abduction and internal rotation. There was a significant effect of time × group interactions for the SIS overall score (p = 0.038). Some parameters of the SB assessment, such as the explored area ratio, mean reaching distance, and smoothness, were significantly associated with clinical upper limb functional measurements with moderate correlation coefficients. CONCLUSIONS: The SB was available for improving upper limb function and health-related quality of life and useful for assessing upper limb ability in stroke survivors. TRIAL REGISTRATION: The study was registered with the clinical research information service (CRIS) ( KCT0003783 , registered 15 April 2019; retrospectively registered).


Subject(s)
Exercise Therapy/instrumentation , Quality of Life , Recovery of Function , Stroke Rehabilitation/instrumentation , Virtual Reality , Aged , Exercise Therapy/methods , Female , Humans , Male , Middle Aged , Pilot Projects , Range of Motion, Articular , Stroke/physiopathology , Stroke Rehabilitation/methods , Upper Extremity/physiopathology
2.
Article in English | MEDLINE | ID: mdl-27379233

ABSTRACT

This research analyzed the effect of bilateral hinged knee braces on a healthy knee from a biomechanical frame in vivo. This was accomplished by fitting a knee brace with two customized wireless force/torque (F/T) sensors that could readily record force and torque during live motion, while the kinetics at the knee were computed using the inverse dynamics of the motion capture and force plate data. Four tasks to test the brace's effects were drop vertical jumping, pivoting, stop vertical jumping, and cutting. The results showed that the hinges in the knee brace can absorb up to 18% of the force and 2.7% of the torque at the knee during various athletic motions. Thus, the hinges demonstrated minimal effect in reducing the mechanical load on the knee. There were limitations concerning the consistency of the motions performed by the subjects during the trials and the influence of the other portions of the brace to evaluate the overall effectiveness of the brace as a whole. Future works may incorporate a fatigue protocol and injured subjects to better determine the effects of the brace. There is still a need for more research on the biomechanical influence of knee braces to develop safer and more effective products.

3.
Biomaterials ; 32(10): 2500-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21208654

ABSTRACT

We utilized a commercially available materials printer to investigate synthetic multicellular cell-to-cell communication because inkjet printing technology makes it easy to print spatiotemporal patterns of soluble biomolecules and live cells. Since cells are genetically programmed to communicate with one another via synthetic biology, cell signaling molecules secreted by one cell microcolony can induce two neighboring cell microcolonies to respond by expressing or stopping the expression of fluorescent protein genes. In this work, we not only characterize the printing parameters such as the initial seeding numbers, spacing distances, microcolony sizes, printing timings, and printed patterns of cells but also demonstrate that the use of the proposed printing technology can provide a useful means for many synthetic biologists to simplify and speed up the investigation of cell-to-cell communication between synthetic bacterial cells.


Subject(s)
Escherichia coli/cytology , Synthetic Biology/methods , Colony Count, Microbial , Escherichia coli/drug effects , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Sepharose/pharmacology , Surface Properties/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL