Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 21(12): 1506-1516, 2020 12.
Article in English | MEDLINE | ID: mdl-33028979

ABSTRACT

A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Humans , Immunophenotyping
2.
Nature ; 611(7934): 139-147, 2022 11.
Article in English | MEDLINE | ID: mdl-36044993

ABSTRACT

Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2-5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6-10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14-18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10-15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae.


Subject(s)
Autoantibodies , B-Lymphocytes , COVID-19 , Humans , Autoantibodies/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Immunoglobulin G/immunology , Single-Cell Analysis , Autoantigens/immunology , Basement Membrane/immunology , Post-Acute COVID-19 Syndrome
3.
Article in English | MEDLINE | ID: mdl-38878020

ABSTRACT

BACKGROUND: Biologic therapies inhibiting the IL-4 or IL-5 pathways are very effective in the treatment of asthma and other related conditions. However, the cytokines IL-4 and IL-5 also play a role in the generation of adaptive immune responses. Although these biologics do not cause overt immunosuppression, their effect in primary severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunization has not been studied completely. OBJECTIVE: Our aim was to evaluate the antibody and cellular immunity after SARS-CoV-2 mRNA vaccination in patients on biologics (PoBs). METHODS: Patients with severe asthma or atopic dermatitis who were taking benralizumab, dupilumab, or mepolizumab and had received the initial dose of the 2-dose adult SARS-CoV-2 mRNA vaccine were enrolled in a prospective, observational study. As our control group, we used a cohort of immunologically healthy subjects (with no significant immunosuppression) who were not taking biologics (NBs). We used a multiplexed immunoassay to measure antibody levels, neutralization assays to assess antibody function, and flow cytometry to quantitate Spike-specific lymphocytes. RESULTS: We analyzed blood from 57 patients in the PoB group and 46 control subjects from the NB group. The patients in the PoB group had lower levels of SARS-CoV-2 antibodies, pseudovirus neutralization, live virus neutralization, and frequencies of Spike-specific B and CD8 T cells at 6 months after vaccination. In subgroup analyses, patients with asthma who were taking biologics had significantly lower pseudovirus neutralization than did subjects with asthma who were not taking biologics. CONCLUSION: The patients in the PoB group had reduced SARS-CoV-2-specific antibody titers, neutralizing activity, and virus-specific B- and CD8 T-cell counts. These results have implications when considering development of a more individualized immunization strategy in patients who receive biologic medications blocking IL-4 or IL-5 pathways.

4.
J Clin Microbiol ; 60(3): e0220121, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35107301

ABSTRACT

Within 8 weeks of primary Clostridioides difficile infection (CDI), as many as 30% of patients develop recurrent disease with the associated risks of multiple relapses, morbidity, and economic burden. There are no clear clinical correlates or validated biomarkers that can predict recurrence during primary infection. This study demonstrated the potential of a simple test for identifying hospitalized CDI patients at low risk for disease recurrence. Forty-six hospitalized CDI patients were enrolled at Emory University Hospitals. Samples of serum and a novel matrix from circulating plasmablasts called "medium-enriched for newly synthesized antibodies" (MENSA) were collected during weeks 1, 2, and 4. Antibodies specific for 10 C. difficile antigens were measured in each sample. Among the 46 C. difficile-infected patients, 9 (19.5%) experienced recurrence within 8 weeks of primary infection. Among the 37 nonrecurrent patients, 23 (62%; 23/37) had anti-C. difficile MENSA antibodies specific for any of the three toxin antigens: TcdB-CROP, TcdBvir-CROP, and/or CDTb. Positive MENSA responses occurred early (within the first 12 days post-symptom onset), including six patients who never seroconverted. A similar trend was observed in serum responses, but they peaked later and identified fewer patients (51%; 19/37). In contrast, none (0%; 0/9) of the patients who subsequently recurred after hospitalization produced antibodies specific for any of the three C. difficile toxin antigens. Thus, patients with a negative early MENSA response against all three C. difficile toxin antigens had a 19-fold greater relative risk of recurrence. MENSA and serum levels of immunoglobulin A (IgA) and/or IgG antibodies for three C. difficile toxins have prognostic potential. These immunoassays measure nascent immune responses that reduce the likelihood of recurrence thereby providing a biomarker of protection from recurrent CDI. Patients who are positive by this immunoassay are unlikely to suffer a recurrence. Early identification of patients at risk for recurrence by negative MENSA creates opportunities for targeted prophylactic strategies that can reduce the incidence, cost, and morbidity due to recurrent CDI.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Biomarkers , Clostridium Infections/epidemiology , Culture Media , Humans , Immunoglobulin A , Immunoglobulin G , Recurrence
5.
J Drugs Dermatol ; 21(11): 1166-1169, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36342732

ABSTRACT

Androgenetic alopecia (AGA) in men and women is the most common cause of hair loss. Affected individuals may experience psychological distress and social withdrawal. Current treatment options for AGA, such as minoxidil and finasteride, vary in efficacy and have side effects. Platelet-rich plasma (PRP) and photobiomodulation are among treatment options that have gained popularity in recent years. While less is known about the effectiveness of fractional lasers for combating hair loss, research suggests that by creating microscopic thermal injury zones, fractional lasers may cause an increase in hair growth from a wound healing process. In this study, we evaluated the efficacy and safety of PRP and 1550 nm fractional erbium-glass laser as monotherapy or combination treatment for AGA in 60 patients. All patients experienced improvement in AGA, but patients treated with the combination therapy had greater improvement in hair density. Overall, PRP and 1550 nm in combination or alone are good treatment choices for AGA, with no side effects. J Drugs Dermatol. 2022;21(11):1166-1169. doi:10.36849/JDD.6750.


Subject(s)
Lasers, Solid-State , Platelet-Rich Plasma , Male , Humans , Female , Alopecia/diagnosis , Alopecia/therapy , Alopecia/chemically induced , Minoxidil , Finasteride/therapeutic use , Lasers, Solid-State/adverse effects , Treatment Outcome
6.
Neurocrit Care ; 37(1): 73-80, 2022 08.
Article in English | MEDLINE | ID: mdl-35137352

ABSTRACT

BACKGROUND: Beta-lactam neurotoxicity is a relatively uncommon yet clinically significant adverse effect in critically ill patients. This study sought to define the incidence of neurotoxicity, derive a prediction model for beta-lactam neurotoxicity, and then validate the model in an independent cohort of critically ill adults. METHODS: This retrospective cohort study evaluated critically ill patients treated with ≥ 48 h of cefepime, piperacillin/tazobactam, or meropenem. Two separate cohorts were created: a derivation cohort and a validation cohort. Patients were screened for beta-lactam neurotoxicity by using search terms and diagnosis codes, followed by clinical adjudication using a standardized adverse event scoring tool. Multivariable regression models and least absolute shrinkage and selection operator were used to identify surrogates for neurotoxicity and develop a multivariable prediction model. RESULTS: The overall incidence of beta-lactam neurotoxicity was 2.6% (n/N = 34/1323) in the derivation cohort and 2.1% in the validation cohort (n/N = 16/767). The final multivariable neurotoxicity assessment tool included weight, Charlson comorbidity score, age, and estimated creatinine clearance as predictors of neurotoxicity. Incidence of neurotoxicity reached 4% in those with a body mass index more than 30 kg/m2. Use of the candidate variables in the neurotoxicity assessment tool suggested that a score more than 35 would identify a patient at high risk for neurotoxicity with 75% sensitivity and 54% specificity. CONCLUSIONS: In this single center cohort of critically ill patients, beta-lactam neurotoxicity was demonstrated less frequently than previously reported. We identified obesity as a novel risk factor for the development of neurotoxicity. The prediction model needs to be further refined before it can be used in clinical practice as a tool to avoid drug-related harm.


Subject(s)
Critical Illness , beta-Lactams , Adult , Anti-Bacterial Agents/adverse effects , Cohort Studies , Humans , Incidence , Piperacillin , Retrospective Studies , beta-Lactams/adverse effects
7.
J Am Soc Nephrol ; 32(12): 3221-3230, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34599041

ABSTRACT

BACKGROUND: Kidney transplant recipients are at increased risk of severe outcomes during COVID-19. Antibodies against the virus are thought to offer protection, but a thorough characterization of anti-SARS-CoV-2 immune globulin isotypes in kidney transplant recipients following SARS-CoV-2 infection has not been reported. METHODS: We performed a cross-sectional study of 49 kidney transplant recipients and 42 immunocompetent controls at early (≤14 days) or late (>14 days) time points after documented SARS-CoV-2 infection. Using a validated semiquantitative Luminex-based multiplex assay, we determined the abundances of IgM, IgG, IgG1-4, and IgA antibodies against five distinct viral epitopes. RESULTS: Kidney transplant recipients showed lower levels of total IgG antitrimeric spike (S), S1, S2, and receptor binding domain (RBD) but not nucleocapsid (NC) at early versus late time points after SARS-CoV-2 infection. Early levels of IgG antispike protein epitopes were also lower than in immunocompetent controls. Anti-SARS-CoV-2 antibodies were predominantly IgG1 and IgG3, with modest class switching to IgG2 or IgG4 in either cohort. Later levels of IgG antispike, S1, S2, RBD, and NC did not significantly differ between cohorts. There was no significant difference in the kinetics of either IgM or IgA antispike, S1, RBD, or S2 on the basis of timing after diagnosis or transplant status. CONCLUSIONS: Kidney transplant recipients mount early anti-SARS-CoV-2 IgA and IgM responses, whereas IgG responses are delayed compared with immunocompetent individuals. These findings might explain the poor outcomes in transplant recipients with COVID-19. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/JASN/2021_11_23_briggsgriffin112321.mp3.


Subject(s)
COVID-19 , Transplant Recipients , Humans , Cross-Sectional Studies , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral , Epitopes , Immunoglobulin M
8.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25186727

ABSTRACT

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Subject(s)
Cichlids/classification , Cichlids/genetics , Evolution, Molecular , Genetic Speciation , Genome/genetics , Africa, Eastern , Animals , DNA Transposable Elements/genetics , Gene Duplication/genetics , Gene Expression Regulation/genetics , Genomics , Lakes , MicroRNAs/genetics , Phylogeny , Polymorphism, Genetic/genetics
10.
Learn Mem ; 24(8): 358-368, 2017 08.
Article in English | MEDLINE | ID: mdl-28716955

ABSTRACT

Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can enhance the acquisition and consolidation of fear extinction in male rats, but the effects of exercise on relapse of fear after extinction are not well understood. Here, we characterized the effects of 2 h of voluntary exercise during the consolidation phase of contextual or auditory fear extinction learning on long-term fear extinction memory and renewal in adult, male and female, Long-Evans rats. Results indicate that exercise enhances consolidation of fear extinction memory and reduces fear relapse after extinction in a sex-dependent manner. These data suggest that brief bouts of exercise could be used as an augmentation strategy for exposure therapy, even in previously sedentary subjects. Fear memories of discrete cues, rather than of contextual ones, may be most susceptible to exercise-augmented extinction, especially in males. Additionally, exercise seems to have the biggest impact on fear relapse phenomena, even if fear extinction memories themselves are only minimally enhanced.


Subject(s)
Extinction, Psychological , Fear , Memory Consolidation , Running/psychology , Sex Characteristics , Analysis of Variance , Animals , Auditory Perception , Electroshock , Estrus/physiology , Extinction, Psychological/physiology , Fear/physiology , Female , Freezing Reaction, Cataleptic/physiology , Male , Memory Consolidation/physiology , Psychological Tests , Rats, Long-Evans , Running/physiology , Volition
11.
Res Sq ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559048

ABSTRACT

The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19-) and non-LLPC (CD19+) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.

12.
medRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496525

ABSTRACT

The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19 - ) and non-LLPC (CD19 + ) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.

13.
PLoS One ; 18(11): e0293203, 2023.
Article in English | MEDLINE | ID: mdl-37922270

ABSTRACT

BACKGROUND: Diagnostic immunoassays for Lyme disease have several limitations including: 1) not all patients seroconvert; 2) seroconversion occurs later than symptom onset; and 3) serum antibody levels remain elevated long after resolution of the infection. INTRODUCTION: MENSA (Medium Enriched for Newly Synthesized Antibodies) is a novel diagnostic fluid that contains antibodies produced in vitro by circulating antibody-secreting cells (ASC). It enables measurement of the active humoral immune response. METHODS: In this observational, case-control study, we developed the MicroB-plex Anti-C6/Anti-pepC10 Immunoassay to measure antibodies specific for the Borrelia burgdorferi peptide antigens C6 and pepC10 and validated it using a CDC serum sample collection. Then we examined serum and MENSA samples from 36 uninfected Control subjects and 12 Newly Diagnosed Lyme Disease Patients. RESULTS: Among the CDC samples, antibodies against C6 and/or pepC10 were detected in all seropositive Lyme patients (8/8), but not in sera from seronegative patients or healthy controls (0/24). Serum antibodies against C6 and pepC10 were detected in one of 36 uninfected control subjects (1/36); none were detected in the corresponding MENSA samples (0/36). In samples from newly diagnosed patients, serum antibodies identified 8/12 patients; MENSA antibodies also detected 8/12 patients. The two measures agreed on six positive individuals and differed on four others. In combination, the serum and MENSA tests identified 10/12 early Lyme patients. Typically, serum antibodies persisted 80 days or longer while MENSA antibodies declined to baseline within 40 days of successful treatment. DISCUSSION: MENSA-based immunoassays present a promising complement to serum immunoassays for diagnosis and tracking therapeutic success in Lyme infections.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Humans , Case-Control Studies , Antigens, Bacterial , Immunoglobulin G , Antibodies, Bacterial , Biomarkers , Antibody-Producing Cells , Early Diagnosis
14.
medRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398319

ABSTRACT

Novel mRNA vaccines have resulted in a reduced number of SARS-CoV-2 infections and hospitalizations. Yet, there is a paucity of studies regarding their effectiveness on immunocompromised autoimmune subjects. In this study, we enrolled subjects naïve to SARS-CoV-2 infections from two cohorts of healthy donors (HD, n=56) and systemic lupus erythematosus (SLE, n=69). Serological assessments of their circulating antibodies revealed a significant reduction of potency and breadth of neutralization in the SLE group, only partially rescued by a 3rd booster dose. Immunological memory responses in the SLE cohort were characterized by a reduced magnitude of spike-reactive B and T cell responses that were strongly associated with poor seroconversion. Vaccinated SLE subjects were defined by a distinct expansion and persistence of a DN2 spike-reactive memory B cell pool and a contraction of spike-specific memory cTfh cells, contrasting with the sustained germinal center (GC)-driven activity mediated by mRNA vaccination in the healthy population. Among the SLE-associated factors that dampened the vaccine responses, treatment with the monoclonal antibody anti-BAFF/Belimumab (a lupus FDA-approved B cell targeting agent) profoundly affected the vaccine responsiveness by restricting the de novo B cell responses and promoting stronger extra-follicular (EF)-mediated responses that were associated with poor immunogenicity and impaired immunological memory. In summary, this study interrogates antigen-specific responses and characterized the immune cell landscape associated with mRNA vaccination in SLE. The identification of factors associated with reduced vaccine efficacy illustrates the impact of SLE B cell biology on mRNA vaccine responses and provides guidance for the management of boosters and recall vaccinations in SLE patients according to their disease endotype and modality of treatment.

15.
Nat Commun ; 14(1): 4201, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452024

ABSTRACT

While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important. Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types. Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.


Subject(s)
COVID-19 , Neutrophils , Humans , Post-Acute COVID-19 Syndrome , Inflammation , Antiviral Agents , Disease Progression
16.
Immunohorizons ; 6(2): 144-155, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173021

ABSTRACT

Due to the severity of COVID-19 disease, the U.S. Centers for Disease Control and Prevention and World Health Organization recommend that manipulation of active viral cultures of SARS-CoV-2 and respiratory secretions from COVID-19 patients be performed in biosafety level (BSL)3 laboratories. Therefore, it is imperative to develop viral inactivation procedures that permit samples to be transferred to lower containment levels (BSL2), while maintaining the fidelity of complex downstream assays to expedite the development of medical countermeasures. In this study, we demonstrate optimal conditions for complete viral inactivation following fixation of infected cells with commonly used reagents for flow cytometry, UVC inactivation in sera and respiratory secretions for protein and Ab detection, heat inactivation following cDNA amplification for droplet-based single-cell mRNA sequencing, and extraction with an organic solvent for metabolomic studies. Thus, we provide a suite of viral inactivation protocols for downstream contemporary assays that facilitate sample transfer to BSL2, providing a conceptual framework for rapid initiation of high-fidelity research as the COVID-19 pandemic continues.


Subject(s)
COVID-19/prevention & control , Specimen Handling/methods , Virus Inactivation , Hot Temperature , Humans , Metabolomics/methods , Pandemics/prevention & control , SARS-CoV-2 , Ultraviolet Rays
17.
mSphere ; 7(4): e0019322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35703544

ABSTRACT

In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies" (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , SARS-CoV-2 , Serologic Tests/methods
18.
medRxiv ; 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35262095

ABSTRACT

Background: In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods: To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results: SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions: SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

19.
Crit Care Explor ; 3(4): e0405, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33912835

ABSTRACT

In practice, midodrine has been used to reduce IV vasopressor requirements and decrease ICU length of stay. However, recent publications have failed to show clinical success when midodrine was administered every 8 hours. One possible reason for the lack of clinical efficacy at this dosing interval may be the pharmacokinetic properties of midodrine that support a more frequent dosing interval. Here, we report our institutional experience with midodrine at a dosing frequency of every 6 hours. DESIGN: Single, quaternary academic medical center, retrospective, descriptive study. SETTING: Floor and ICU patients admitted to Mayo Clinic, Rochester, from May 7, 2018, to September 30, 2020. PATIENTS: Adult patients with an order for midodrine with a dosing frequency of "every 6 hours" or "four times daily" were eligible for inclusion. INTERVENTIONS: No intervention performed. All data were abstracted retrospectively from the electronic medical record. MEASUREMENTS AND MAIN RESULTS: Forty-four unique patients were identified that met inclusion criteria. Patients were an average of 65 years and 63.6% were male. The individual doses of midodrine ranged from 5 to 20 mg. Twenty-three patients (52.3%) were receiving IV vasopressors at the time midodrine was ordered every 6 hours. Vasopressor requirements decreased from an average of 0.10 norepinephrine equivalents 24 hours prior to the every 6-hour order to 0.05 norepinephrine equivalents 24 hours after an order for midodrine every 6 hour was placed. CONCLUSIONS: Increasing the dosing frequency of midodrine to every 6 hours may optimize its pharmacokinetic profile without compromising safety. This midodrine dosing frequency should be prospectively evaluated as a primary strategy for accelerated IV vasopressor wean.

20.
J Immunol Methods ; 492: 112932, 2021 05.
Article in English | MEDLINE | ID: mdl-33221459

ABSTRACT

BACKGROUND: Clostridioides difficile infections (CDI) have been a challenging and increasingly serious concern in recent years. While early and accurate diagnosis is crucial, available assays have frustrating limitations. OBJECTIVE: Develop a simple, blood-based immunoassay to accurately diagnose patients suffering from active CDI. MATERIALS AND METHODS: Uninfected controls (N = 95) and CDI patients (N = 167) were recruited from Atlanta area hospitals. Blood samples were collected from patients within twelve days of a positive CDI test and processed to yield serum and PBMCs cultured to yield medium enriched for newly synthesized antibodies (MENSA). Multiplex immunoassays measured Ig responses to ten recombinant C. difficile antigens. RESULTS: Sixty-six percent of CDI patients produced measurable responses to C. difficile antigens in their serum or MENSA within twelve days of a positive CDI test. Fifty-two of the 167 CDI patients (31%) were detectable in both serum and MENSA, but 32/167 (19%) were detectable only in MENSA, and 27/167 (16%) were detectable only in serum. DISCUSSION: We describe the results of a multiplex immunoassay for the diagnosis of ongoing CDI in hospitalized patients. Our assay resolved patients into four categories: MENSA-positive only, serum-positive only, MENSA- and serum-positive, and MENSA- and serum-negative. The 30% of patients who were MENSA-positive only may be accounted for by nascent antibody secretion prior to seroconversion. Conversely, the serum-positive only subset may have been more advanced in their disease course. Immunocompromise and misdiagnosis may have contributed to the 34% of CDI patients who were not identified using MENSA or serum immunoassays. IMPORTANCE: While there was considerable overlap between patients identified through MENSA and serum, each method detected a distinctive patient group. The combined use of both MENSA and serum to detect CDI patients resulted in the greatest identification of CDI patients. Together, longitudinal analysis of MENSA and serum will provide a more accurate evaluation of successful host humoral immune responses in CDI patients.


Subject(s)
Antibodies, Bacterial/analysis , Clostridioides difficile/isolation & purification , Clostridium Infections/diagnosis , Serologic Tests/methods , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Case-Control Studies , Cell Culture Techniques , Clostridioides difficile/immunology , Clostridium Infections/blood , Clostridium Infections/microbiology , Culture Media/metabolism , Female , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL