Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ann Rheum Dis ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777378

ABSTRACT

OBJECTIVES: Vacuoles, E1 enzyme, X-linked, autoinflammatory and somatic (VEXAS) syndrome is an adult-onset autoinflammatory disease associated with somatic ubiquitin-like modifier-activating enzyme 1 (UBA1) mutations. We aimed to evaluate the efficacy and safety of targeted therapies. METHODS: Multicentre retrospective study including patients with genetically proven VEXAS syndrome who had received at least one targeted therapy. Complete response (CR) was defined by a clinical remission, C-reactive protein (CRP) ≤10 mg/L and a ≤10 mg/day of prednisone-equivalent therapy, and partial response (PR) was defined by a clinical remission and a 50% reduction in CRP levels and glucocorticoid dose. RESULTS: 110 patients (median age 71 (68-79) years) who received 194 targeted therapies were included: 78 (40%) received Janus kinase (JAK) inhibitors (JAKi), 51 (26%) interleukin (IL)-6 inhibitors, 33 (17%) IL-1 inhibitors, 20 (10%) tumour necrosis factor (TNFα) blockers and 12 (6%) other targeted therapies. At 3 months, the overall response (CR and PR) rate was 24% with JAKi, 32% with IL-6 inhibitors, 9% with anti-IL-1 and 0% with TNFα blockers or other targeted therapies. At 6 months, the overall response rate was 30% with JAKi and 26% with IL-6 inhibitors. Survival without treatment discontinuation was significantly longer with JAKi than with the other targeted therapies. Among patients who discontinued treatment, causes were primary failure, secondary failure, serious adverse event or death in 43%, 14%, 19% and 19%, respectively, with JAKi and 46%, 11%, 31% and 9%, respectively, with IL-6 inhibitors. CONCLUSIONS: This study shows the benefit of JAKi and IL-6 inhibitors, whereas other therapies have lower efficacy. These results need to be confirmed in prospective trials.

3.
Joint Bone Spine ; 91(4): 105700, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38307404

ABSTRACT

VEXAS (Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic) syndrome is a recently described autoinflammatory syndrome, mostly affecting men older than 50 years, caused by somatic mutation in the UBA1 gene, a X-linked gene involved in the activation of ubiquitin system. Patients present a broad spectrum of inflammatory manifestations (fever, neutrophilic dermatosis, chondritis, pulmonary infiltrates, ocular inflammation, venous thrombosis) and hematological involvement (macrocytic anemia, thrombocytopenia, vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow) that are responsible for a significant morbidity and mortality. The therapeutic management is currently poorly codified but is based on two main approaches: controlling inflammatory symptoms (by using corticosteroids, JAK inhibitor or tocilizumab) or targeting the UBA1-mutated hematopoietic population (by using azacitidine or allogeneic hematopoietic stem cell transplantation). Supportive care is also important and includes red blood cell or platelet transfusions, erythropoiesis stimulating agents, thromboprophylaxis and anti-infectious prophylaxis. The aim of this review is to provide a current overview of the VEXAS syndrome, particularly focusing on its pathophysiological, diagnostic and therapeutic aspects.


Subject(s)
Mutation , Humans , Male , Syndrome , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/therapy , Hereditary Autoinflammatory Diseases/drug therapy , Middle Aged , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/therapy , Ubiquitin-Activating Enzymes
4.
Lancet Haematol ; 11(2): e160-e167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38302223

ABSTRACT

The presence of vacuoles in myeloid and erythroid progenitor cells in bone marrow aspirates is a key feature of vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome. The mere observation of vacuolated progenitor cells is not specific to VEXAS syndrome; in this Viewpoint, we point out the causes to be considered in this situation. Vacuoles, in particular, can be observed in individuals with wild-type UBA1 and with persistent inflammatory features or myelodysplastic syndromes. However, several clues support the diagnosis of VEXAS syndrome in the presence of vacuolated bone marrow progenitors: a high number of vacuolated progenitors and of vacuoles per cell, the predominance of vacuoles in early rather than late progenitors, and the vacuolisation of both myeloid and erythroid progenitors with predominance of myeloid ones. Some criteria derived from these observations have been proposed with great diagnostic performances. However, the absence or a low proportion of vacuolated cells should not prevent UBA1 gene sequencing.


Subject(s)
Bone Marrow , Myelodysplastic Syndromes , Skin Diseases, Genetic , Humans , Vacuoles , Mutation
5.
RMD Open ; 10(2)2024 May 20.
Article in English | MEDLINE | ID: mdl-38772678

ABSTRACT

OBJECTIVE: Patients with X linked agammaglobulinemia are susceptible to enterovirus (EV) infections. Similarly, severe EV infections have been described in patients with impaired B-cell response following treatment with anti-CD20 monoclonal antibodies (mAbs), mostly in those treated for haematological malignancies. We aimed to describe severe EV infections in patients receiving anti-CD20 mAbs for immune-mediated inflammatory diseases (IMIDs). METHODS: Patients were included following a screening of data collected through the routine surveillance of EV infections coordinated by the National Reference Center and a review of the literature. Additionally, neutralising antibodies were assessed in a patient with chronic EV-A71 meningoencephalitis. RESULTS: Nine original and 17 previously published cases were retrieved. Meningoencephalitis (n=21/26, 81%) associated with EV-positive cerebrospinal fluid (n=20/22, 91%) was the most common manifestation. The mortality rate was high (27%). EV was the only causal agents in all reported cases. Patients received multiple anti-CD20 mAbs infusions (median 8 (5-10)), resulting in complete B-cell depletion and moderate hypogammaglobulinemia (median 4.9 g/L (4.3-6.7)), and had limited concomitant immunosuppressive treatments. Finally, in a patient with EV-A71 meningoencephalitis, a lack of B-cell response to EV was shown. CONCLUSION: EV infection should be evoked in patients with IMIDs presenting with atypical organ involvement, especially meningoencephalitis. Anti-CD20 mAbs may lead to impaired B-cell response against EV, although an underlying primary immunodeficiency should systematically be discussed.


Subject(s)
Antibodies, Monoclonal , Antigens, CD20 , Enterovirus Infections , Humans , Enterovirus Infections/immunology , Enterovirus Infections/diagnosis , Male , Female , Antibodies, Monoclonal/therapeutic use , Antigens, CD20/immunology , Middle Aged , Adult , Meningoencephalitis/immunology , Meningoencephalitis/virology , Meningoencephalitis/etiology , Meningoencephalitis/diagnosis , Meningoencephalitis/drug therapy , Aged , Rituximab/therapeutic use , B-Lymphocytes/immunology , Agammaglobulinemia/immunology , Agammaglobulinemia/complications , Inflammation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL